Monthly Best Of on 05/17/2000




A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France
france telecom, France Telecom R&D

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 05/17/2000 and last updated on 10/03/2024 17:00:51 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



Welcome aboard A VIRTUAL SPACE-TIME TRAVEL MACHINE
1-1181 reference(s)
Artistic view of the prime numbers
2-656 reference(s)
Jean-François COLONNA
3-655 reference(s)
Quark and gluon structure of a nucleon
4-641 reference(s)
Quark and gluon dynamics of the nucleon
5-628 reference(s)
The 16 most referenced pictures on 01/30/1996
6-506 reference(s)
Artistic view of the Big Bang
7-475 reference(s)
Particle collisions without energy loss in a tridimensional space with display of the velocity histogram
8-453 reference(s)
2.pi rotation about Y and Z axes of a quaternionic Julia set -tridimensional cross-sections-
9-440 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
10-402 reference(s)
From the infinitely small to the infinitely big
11-361 reference(s)
Cauliflowers, seaweeds, shells,... with fog
12-357 reference(s)
The Birth of the Universe
13-330 reference(s)
From Pluto to the Sun
14-326 reference(s)
Bidimensional zoom in on the Z=Gamma(Z)iteration with display of the arguments
15-319 reference(s)
Dynamics of archimedian mountains (bird's-eye view)
16-312 reference(s)
The Lorenz attractor
17-289 reference(s)
Mountains at sunrise
18-285 reference(s)
Particle collisions with energy loss in a tridimensional space with display of the velocity histogram
19-258 reference(s)
Beyond the Gate
20-255 reference(s)
Bidimensional visualization of the Verhulst dynamics -(grey,orange,red)display negative Lyapunov exponents, (yellow,green,blue) display positive Lyapunov exponents-
21-255 reference(s)
Texture animation by means of the generalized Fourier filtering process
22-248 reference(s)
N-body problem integration (N=2)displaying a perfect Keplerian orbit
23-247 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
24-239 reference(s)
The Mandelbrot set computed for 1 to 16 iterations with display of the arguments
25-236 reference(s)
The three pendulums and three magnets problem computed on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
26-235 reference(s)
Archimedian mountains (bird's-eye view)
27-231 reference(s)
A perfect bidimensional piston with following initial conditions: still piston, high temperature particles at left and low temperature particles at right, and with display of velocity histograms
28-230 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
29-229 reference(s)
Tridimensional visualization of a bidimensional turbulent flow
30-220 reference(s)
Animation of a sunrise on mountains
31-219 reference(s)
Three pendulums -the Red one, the Green one and the Blue one- and three magnets -white-
32-213 reference(s)
Bidimensional zoom in on the Z=Zeta(Z)iteration with display of the arguments
33-213 reference(s)
N-body problem integration (N=3)with one yellow star and two planets (the red one being very heavy and the blue one being light)
34-212 reference(s)
From low to high galaxy density in the local universe (the depth is displayed by means of the luminance)
35-211 reference(s)
Bidimensional zoom in on the Mandelbrot set with display of the arguments
36-204 reference(s)
Alien
37-202 reference(s)
Electron-positron scattering
38-202 reference(s)
Tridimensional display of 36 eigenstates of the Hydrogen atom (bidimensional computation)
39-200 reference(s)
Electron diffraction
40-200 reference(s)
Real numbers do not exist for a computer
41-197 reference(s)
Tridimensional display of the Z=Gamma(Z)iteration inside [-20.0,+20.0]x[-20.0,+20.0] (bird's-eye view)
42-197 reference(s)
The Lorenz attractor -sensitivity to initial conditions (displayed as the central point of each frame)-
43-195 reference(s)
World Mathematical Year 2000
44-194 reference(s)
N-body problem integration (N=10)displaying the actual Solar System with its simultaneous 2.pi rotation
45-194 reference(s)
Triple impossible staircase
46-194 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
47-191 reference(s)
Zoom in on the von Koch curve
48-190 reference(s)
Rotation about the X axis of the Lorenz attractor
49-190 reference(s)
Bidimensional zoom in on the Verhulst dynamics
50-185 reference(s)
Tridimensional visualization of a bidimensional turbulent flow
51-181 reference(s)
A twisting rope
52-179 reference(s)
The generalized Ulam spiral displaying 1024 numbers
53-175 reference(s)
16 earth-like planets initially on the same keplerian trajectory
54-174 reference(s)
Artistic view of a 2.pi rotation about the Y axis of a quaternionic Julia set -tridimensional cross-sections-
55-174 reference(s)
Bidimensional visualization of a bidimensional turbulent flow -sensitivity to initial conditions-
56-173 reference(s)
Paradoxal Monument Valley at sunset, 'World of Tiers' -a Tribute to Philip José Farmer-
57-172 reference(s)
display of the number of iterations for the Z=Gamma(Z)iteration inside [-20.0,+20.0]x[-20.0,+20.0]
58-170 reference(s)
A shell (Jeener surface 1)in motion
59-169 reference(s)
Artistic view of Ph(Zeta)
60-165 reference(s)
Alien spacecrafts on the Moon
61-165 reference(s)
Rotation about the X axis of the Lorenz attractor (5000 iterations), computed simultaneously on two different computers
62-165 reference(s)
From Mars to the Sun -extrapolation-
63-162 reference(s)
Carnival in motion
64-161 reference(s)
Tridimensional zoom in on the Mandelbrot set
65-161 reference(s)
Texture animation by means of Fourier interpolation
66-161 reference(s)
Self-similar zoom in on tridimensional fractal structure
67-161 reference(s)
The iterative process used to generate bidimensional fractal fields (16 iterations)
68-160 reference(s)
Synthesis of tridimensional textures
69-160 reference(s)
Mandelbrot set in the sky
70-158 reference(s)
Computation of the Lorenz attractor on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
71-158 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
72-156 reference(s)
Animation of a natural form
73-155 reference(s)
The foggy Babel Tower -a Tribute to Brueghel the Elder-
74-155 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)-sensitivity to initial conditions-
75-155 reference(s)
Tridimensional display of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
76-155 reference(s)
The Möbius strip
77-154 reference(s)
Reconstruction of a 2D structure -the map of France-
78-153 reference(s)
Rotation about the X axis of the Lorenz attractor (1000 iterations), computed simultaneously on two different computers
79-153 reference(s)
The Lorenz attractor -sensitivity to integration methods used (Red=Euler, Green=Runge-Kutta/2nd order, Blue=Runge-Kutta/4th order)-
80-150 reference(s)
Along the border of the Mandelbrot set
81-149 reference(s)
2.pi rotation about the Y axis of a quaternionic Julia set -tridimensional cross-sections-
82-149 reference(s)
Peace
83-147 reference(s)
2 identical grey squares moving over a grey scale
84-146 reference(s)
Brownian motion of a few heavy slow particles inside a gaz of fast light particles
85-145 reference(s)
Isotropic random walk of 64 particles on a bidimensional square lattice
86-144 reference(s)
Zoom in on the quaternionic Mandelbrot set -tridimensional cross-sections-
87-143 reference(s)
Earthquake (bird's-eye view)
88-142 reference(s)
Synthesis of bidimensional geometrical textures
89-142 reference(s)
Translation along the fourth axis of a quaternionic Julia set -tridimensional cross-sections-
90-141 reference(s)
Fractal synthesis of mountains with vegetation and stormy clouds
91-140 reference(s)
Rotation of a shell (Jeener surface 1)
92-140 reference(s)
Mountains and light cloud dynamics -this sequence being periodical-
93-139 reference(s)
Electron-neutrino scattering
94-139 reference(s)
16 complex Julia sets along the border of the Mandelbrot set with display of the iteration numbers
95-138 reference(s)
Reconstruction of a 3D structure -a cubic lattice-
96-138 reference(s)
More and more craters on the Moon
97-137 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -the Sun point of view-
98-137 reference(s)
N-body problem integration (N=4)with one yellow star and two planets (the red one being very heavy and the blue one and its white satellite being light)
99-136 reference(s)
Diffusion between two boxes (initial conditions: the left one is empty, the right one contains 256 particles), with collisions and display of the gravity center -white particle-
100-135 reference(s)
Texture animation by means of Fourier filtering of a random walk process
101-134 reference(s)
Bidimensional visualization of the Verhulst dynamics
102-132 reference(s)
Rotation about the X axis of the Lorenz attractor
103-132 reference(s)
The 16 most referenced pictures on 07/26/1996
104-132 reference(s)
An arbitrary surface (Jeener surface 2)in motion
105-131 reference(s)
The Eratosthene sieve displaying 10x10 numbers
106-130 reference(s)
Animation of a quaternionic Julia island
107-130 reference(s)
The random walk of photons escaping the Sun
108-129 reference(s)
Botticelli anomaly on the Moon
109-129 reference(s)
Autostereogram with an hidden volcano and 64 self-portraits
110-129 reference(s)
display of the argument of the last iteration for the Z=Gamma(Z)iteration inside [-20.0,+20.0]x[-20.0,+20.0]
111-129 reference(s)
A Lissajous surface
112-128 reference(s)
Cloud dynamics -this sequence being periodical- (bird's-eye view)
113-128 reference(s)
display of the argument of the last iteration for the Z=Zeta(Z)iteration inside [-20.0,+20.0]x[-20.0,+20.0]
114-128 reference(s)
Light cloud dynamics at sunset -this sequence being periodical-
115-128 reference(s)
Isotropic random walk of 64 particles on a tridimensional square lattice
116-127 reference(s)
From Mars to the Sun
117-127 reference(s)
2.pi rotation about the Y axis of a quaternionic Julia set with motion blur -tridimensional cross-section-
118-127 reference(s)
Tridimensional display of 36 eigenstates of the Hydrogen atom (tridimensional computation)
119-127 reference(s)
N-body problem integration (N=10)displaying the actual Solar System with its simultaneous 2.pi rotation, our Earth being at the origin of the coordinates
120-126 reference(s)
Texture animation by means of Fourier interpolation
121-126 reference(s)
The erection of the Babel Tower
122-125 reference(s)
Light cloud dynamics -this sequence being periodical-
123-125 reference(s)
display of the inclination of two elliptic trajectories
124-125 reference(s)
16 complex Julia sets
125-125 reference(s)
Artistic view of 128 quaternionic Julia sets -tridimensional cross-sections-
126-124 reference(s)
The normal field of a shell (Jeener surface 1)
127-124 reference(s)
Artistic view of a nucleon
128-124 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-demo_14
13351 reference(s)
2-An2000.01.Fra
2989 reference(s)
3-display
1818 reference(s)
4-Galerie_ArtAndScience.FV
469 reference(s)
5-ImagesDuVirtuel.01.Fra
414 reference(s)
6-GenieLogiciel.01.Fra
354 reference(s)
7-ExpV_VirE.Fra
351 reference(s)
8-An2000.02.Fra
350 reference(s)
9-present.01.
347 reference(s)
10-Galerie_BestOf.FV
339 reference(s)
11-help.
338 reference(s)
12-demo_14.FV
334 reference(s)
13-BEST.20000403
327 reference(s)
14-Galerie_ArtisticCreation.FV
320 reference(s)
15-copyright.01.
295 reference(s)
16-ImagesDuVirtuel.01.Fra.FV
291 reference(s)
17-Galerie_NewPictures.FV
276 reference(s)
18-Galerie_CelestialMechanics.FV
249 reference(s)
19-Galerie_Astrophysics.FV
248 reference(s)
20-Galerie_QuantumMechanics.FV
229 reference(s)
21-Galerie_DeterministicChaos.FV
225 reference(s)
22-AProposSite.01.Fra
225 reference(s)
23-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
224 reference(s)
24-An2000.01.Ang
211 reference(s)
25-Fractal.01
210 reference(s)
26-Galerie_FluidMechanics.FV
203 reference(s)
27-catalogue.11
202 reference(s)
28-Galerie_DeterministicFractalGeometry.FV
197 reference(s)
29-Galerie_FromTheInfinitelySmallToTheInfinitelyBig.FV
195 reference(s)
30-ExpV_VirE.Ang
189 reference(s)
31-Galerie_NumberTheory.FV
188 reference(s)
32-AnimFractal.01.
188 reference(s)
33-VisSci_SciVis.01
182 reference(s)
34-ImpossibleStructures.01.Ang
182 reference(s)
35-Galerie_TextureSynthesis.FV
177 reference(s)
36-Vcatalogue.11
172 reference(s)
37-ManyChaos.01.Fra
171 reference(s)
38-create.03.
170 reference(s)
39-RealNumbers.01.Fra
168 reference(s)
40-MonumentValley.01.Ang
163 reference(s)
41-mail.01.vv
162 reference(s)
42-MonumentValley.01.Fra
159 reference(s)
43-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0006
157 reference(s)
44-LOG_xiMc.11
154 reference(s)
45-Galerie_GeneralitiesVisualization.FV
153 reference(s)
46-Galerie_SignalProcessing.FV
150 reference(s)
47-ImpossibleStructures.01.Fra
149 reference(s)
48-infinity.05
147 reference(s)
49-JFC
147 reference(s)
50-ExpV_VirE.01.Ang
147 reference(s)
51-IllusionConnaissance.01
146 reference(s)
52-BEST.20000323
145 reference(s)
53-Galerie_SensitivityToRoundingOffErrors.FV
144 reference(s)
54-Spheres.01
143 reference(s)
55-infinity.03
141 reference(s)
56-ExpV_VirE.01.Fra
135 reference(s)
57-An2000.11.Fra
134 reference(s)
58-LumiereVirtuelleParadoxale.01
132 reference(s)
59-An2000.03.Fra
130 reference(s)
60-Kepler.02.
128 reference(s)
61-DuReelAuVirtuel.01.Fra
128 reference(s)
62-An2000.04.Fra
127 reference(s)
63-ManyChaos.01.Ang
120 reference(s)
64-ArtOrdinateur.01
120 reference(s)
65-An2000.05.Fra
114 reference(s)
66-Ariane501.01.Fra
107 reference(s)
67-relai.01.vv
106 reference(s)
68-relai_universel.01.vA
100 reference(s)
69-An2000.06.Fra
100 reference(s)
70-PremierMinistre.01.Fra
99 reference(s)
71-ArtScience.01
99 reference(s)
72-relativity.01.
97 reference(s)
73-GenieLogiciel.01.Ang
96 reference(s)
74-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0001
95 reference(s)
75-infinity.04
92 reference(s)
76-infinity.01
92 reference(s)
77-PresidentRepublique.01.Fra
91 reference(s)
78-subject.01.
90 reference(s)
79-T_DuReelAuVirtuel_ExpReelle.01.Fra.0002
90 reference(s)
80-relai_universel.01.vv
88 reference(s)
81-T_DuReelAuVirtuel_recherche.01.Fra.0008
88 reference(s)
82-T_DuReelAuVirtuel_recherche.01.Fra.0005
88 reference(s)
83-infinity.02
87 reference(s)
84-T_DuReelAuVirtuel_recherche.01.Fra.0003
87 reference(s)
85-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0003
87 reference(s)
86-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0003
87 reference(s)
87-InformatiqueProfessionnelle.01.Fra
87 reference(s)
88-T_DuReelAuVirtuel_recherche.01.Fra.0001
86 reference(s)
89-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0001
86 reference(s)
90-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0002
86 reference(s)
91-PourLaScience.01.Fra
86 reference(s)
92-real.02.
85 reference(s)
93-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0005
85 reference(s)
94-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0008
85 reference(s)
95-T_DuReelAuVirtuel_ExpReelle.01.Fra.0003
85 reference(s)
96-T_DuReelAuVirtuel_ExpReelle.01.Fra.0001
85 reference(s)
97-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0004
84 reference(s)
98-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0002
84 reference(s)
99-PresidentRepublique.02.Fra
84 reference(s)
100-AProposSite.01.Ang
84 reference(s)
101-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0005
83 reference(s)
102-MinistreEducationNationale.01.Fra
83 reference(s)
103-stereogra.01.c.
82 reference(s)
104-relai.01.vC
82 reference(s)
105-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0010
82 reference(s)
106-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0007
82 reference(s)
107-relai.01.vB
81 reference(s)
108-Galerie_DeterministicChaos
81 reference(s)
109-relai_universel.01.vB
79 reference(s)
110-relai.01.vA
79 reference(s)
111-T_DuReelAuVirtuel_recherche.01.Fra.0011
79 reference(s)
112-T_DuReelAuVirtuel_recherche.01.Fra.0006
79 reference(s)
113-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0000
79 reference(s)
114-RealNumbers.01.Ang
79 reference(s)
115-T_DuReelAuVirtuel_recherche.01.Fra.0002
78 reference(s)
116-T_DuReelAuVirtuel_ExpReelle.01.Fra.0004
78 reference(s)
117-T_DuReelAuVirtuel_ExpReelle.01.Fra.0000
77 reference(s)
118-T_DuReelAuVirtuel_recherche.01.Fra.0010
76 reference(s)
119-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0006
76 reference(s)
120-Galerie_CelestialMechanics
76 reference(s)
121-T_DuReelAuVirtuel_recherche.01.Fra.0007
75 reference(s)
122-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0009
75 reference(s)
123-T_DuReelAuVirtuel_ExpReelle.01.Fra.0005
75 reference(s)
124-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0004
74 reference(s)
125-T_DuReelAuVirtuel_recherche.01.Fra.0004
73 reference(s)
126-T_DuReelAuVirtuel_recherche.01.Fra.0000
73 reference(s)
127-T_DuReelAuVirtuel_recherche.01.Fra.0009
72 reference(s)
128-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0007
72 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2000-2024.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2000-2024.