Monthly Best Of on 12/29/2022




A two-hole pseudo-torus

Jean-François COLONNA

www.lactamme.polytechnique.fr

jean-francois.colonna@polytechnique.edu
CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, 91120 Palaiseau, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Do you believe that Real Numbers exist for a computer and that floating point computations are safe? [Croyez-vous que les Nombres Réels existent dans un ordinateur et que les calculs flottants sont sûrs?]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find thousands of pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 12/29/2022 and last updated on 12/29/2022 12:09:51 -CET-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



Empty
1-338 reference(s)
A Tribute to Benoît Mandelbrot (1924-2010): tridimensional zoom in on the Mandelbrot set with mapping of the arguments
2-200 reference(s)
The Sierpinski carpet -iteration 4-
3-198 reference(s)
The Cantor triadic set -iterations 0 to 5-
4-192 reference(s)
A Tribute to Benoît Mandelbrot (1924-2010): tridimensional zoom in on the Mandelbrot set with mapping of the arguments
5-189 reference(s)
The Sierpinski carpet -iteration 2-
6-178 reference(s)
The Sierpinski carpet -iteration 3- with colors -a Tribute to Karl Menger and Piet Mondrian-
7-174 reference(s)
The Sierpinski carpet -iteration 1-
8-172 reference(s)
The Sierpinski carpet -iteration 5-
9-171 reference(s)
The Sierpinski carpet -iteration 3-
10-167 reference(s)
The Sierpinski carpet -iteration 0-
11-158 reference(s)
The K-smooth integers on a Tridimensional Hilbert Curve -iteration 3-
12-157 reference(s)
A tridimensional intertwining made of an extended Menger sponge -iteration 5- inside a sphere
13-155 reference(s)
A tridimensional intertwining made of an extended Menger sponge -iteration 5- inside a sphere
14-153 reference(s)
The K-smooth integers on a Bidimensional Hilbert Curve -iteration 5-
15-152 reference(s)
A tridimensional intertwining made of an extended Menger sponge -iteration 5- inside a sphere
16-151 reference(s)
A tridimensional intertwining made of an extended Menger sponge -iteration 5- inside a sphere
17-150 reference(s)
A tridimensional intertwining made of an amazing cross-section inside the Menger sponge -iteration 5- inside a sphere
18-150 reference(s)
A tridimensional intertwining made of an amazing cross-section inside the Menger sponge -iteration 5- inside a sphere
19-150 reference(s)
A tridimensional intertwining made of the Menger sponge -iteration 5- inside a sphere
20-149 reference(s)
A tridimensional intertwining made of the Menger sponge -iteration 5- inside a sphere
21-149 reference(s)
A tridimensional intertwining made of an amazing cross-section inside the Menger sponge -iteration 5- inside a sphere
22-149 reference(s)
A tridimensional intertwining made of an amazing cross-section inside the Menger sponge -iteration 5- inside a sphere
23-149 reference(s)
The Menger sponge -iteration 5- with a tridimensional non linear transformation
24-149 reference(s)
An amazing cross-section inside the Menger sponge -iteration 5- with a tridimensional non linear transformation
25-149 reference(s)
A tridimensional intertwining made of the Menger sponge -iteration 5- inside a sphere
26-148 reference(s)
The Menger sponge -iteration 5- with a tridimensional non linear transformation
27-148 reference(s)
An amazing cross-section inside the Menger sponge -iteration 5- with a tridimensional non linear transformation
28-148 reference(s)
A tridimensional intertwining made of the Menger sponge -iteration 5- inside a sphere
29-147 reference(s)
The 1024 first digits -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 5-
30-142 reference(s)
The 512 first digits -base 10- of 'pi' on a Tridimensional Hilbert Curve -iteration 3-
31-140 reference(s)
The prime numbers among the 1024 first integer numbers on a Bidimensional Hilbert Curve -iteration 5-
32-137 reference(s)
The prime numbers among the 512 first integer numbers on a Tridimensional Hilbert Curve -iteration 3-
33-133 reference(s)
The K-smooth integers on a Bidimensional Hilbert Curve -iteration 1-
34-131 reference(s)
Artistic view of the prime numbers
35-131 reference(s)
Sixteen interlaced fractal torus
36-129 reference(s)
The K-smooth integers on a Tridimensional Hilbert Curve -iteration 2-
37-128 reference(s)
The K-smooth integers on a Bidimensional Hilbert Curve -iteration 4-
38-127 reference(s)
The K-smooth integers on a Tridimensional Hilbert Curve -iteration 4-
39-126 reference(s)
The K-smooth integers on a Tridimensional Hilbert Curve -iteration 1-
40-125 reference(s)
The K-smooth integers on a Bidimensional Hilbert Curve -iteration 2-
41-125 reference(s)
The K-smooth integers on a Bidimensional Hilbert Curve -iteration 3-
42-121 reference(s)
Tridimensional Hilbert Curve -iteration 3-
43-114 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
44-114 reference(s)
A 1972 Télémécanique T1600 computer with a 32 KB central memory and two 512 KB disk drives
45-113 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...),Z<SUB>3</SUB>(...)} and based on an 'open' 7-foil torus knot -iteration 3-
46-113 reference(s)
Bidimensional Hilbert Curve -iteration 4-
47-113 reference(s)
The 64 first digits -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 3-
48-112 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
49-112 reference(s)
The random walk of photons escaping the Sun
50-110 reference(s)
The digits {0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5} on a Bidimensional Hilbert Curve -iteration 2-
51-110 reference(s)
The 16 first digits -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 2-
52-110 reference(s)
Bidimensional Hilbert Curve -iteration 5-
53-109 reference(s)
Tridimensional Hilbert Curve -iterations 1 to 3-
54-109 reference(s)
Autostereogram with an hidden ring and ghost bows
55-108 reference(s)
The prime numbers among the 256 first integer numbers on a Bidimensional Hilbert Curve -iteration 4-
56-107 reference(s)
The 64 first digits -base 10- of 'pi' on a Tridimensional Hilbert Curve -iteration 2-
57-107 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 1-
58-107 reference(s)
Tridimensional Hilbert Curve defined by means of the [0,1] --> [0,1]x[0,1]x[0,1] Peano Surjection -T defined with 9 digits-
59-107 reference(s)
Tridimensional Hilbert Curve -iterations 1 to 3-
60-107 reference(s)
Tridimensional Hilbert Curve -iteration 4-
61-107 reference(s)
Tridimensional Hilbert Curve -iteration 4-
62-106 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...),Z<SUB>3</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 3-
63-105 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>5</SUB>(...),Y<SUB>5</SUB>(...)} -iteration 5-
64-105 reference(s)
The bidimensional [0,1] --> [0,1]x[0,1] Peano Surjection -T defined with 2 digits-
65-105 reference(s)
Bidimensional Hilbert Curve -iteration 2-
66-105 reference(s)
Tridimensional Hilbert Curve -iteration 4-
67-105 reference(s)
Bidimensional Hilbert Curve -iterations 1 to 5-
68-105 reference(s)
The prime numbers among the 4 first integer numbers on a Bidimensional Hilbert Curve -iteration 1-
69-104 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...),Z<SUB>2</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 2-
70-104 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...),Z<SUB>4</SUB>(...)} -iteration 4-
71-104 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...),Z<SUB>3</SUB>(...)} -iteration 3-
72-104 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...)} -iteration 2-
73-104 reference(s)
Vibrating Tridimensional Hilbert Curve -iteration 3-
74-104 reference(s)
A fractal Möbius strip
75-104 reference(s)
The prime numbers among the 64 first integer numbers on a Bidimensional Hilbert Curve -iteration 3-
76-103 reference(s)
The 4096 first digits -base 10- of 'pi' on a Tridimensional Hilbert Curve -iteration 4-
77-103 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...),Z<SUB>3</SUB>(...)} and based on an 'open' 5-foil torus knot -iteration 3-
78-103 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...),Z<SUB>2</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 2-
79-103 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...),Z<SUB>4</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 4-
80-103 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>5</SUB>(...),Y<SUB>5</SUB>(...)} -iteration 5-
81-103 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...)} -iteration 1-
82-103 reference(s)
Tridimensional Hilbert Curve defined by means of the [0,1] --> [0,1]x[0,1]x[0,1] Peano Surjection -T defined with 3 digits-
83-103 reference(s)
Bidimensional Hilbert Curve -iteration 4-
84-103 reference(s)
Vibrating Tridimensional Hilbert Curve -iteration 4-
85-103 reference(s)
Anaglyph -blue=right, red=left- of the tridimensional Hilbert Curve -iteration 4-
86-103 reference(s)
Tridimensional Hilbert Curve -iteration 1-
87-103 reference(s)
The prime numbers among the 4096 first integer numbers on a Tridimensional Hilbert Curve -iteration 4-
88-102 reference(s)
The prime numbers among the 64 first integer numbers on a Tridimensional Hilbert Curve -iteration 2-
89-102 reference(s)
The 4 first digits -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 1-
90-102 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} and based on an 'open' 7-foil torus knot -iteration 1-
91-102 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...),Z<SUB>3</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 3-
92-102 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} -iteration 1-
93-102 reference(s)
The [0,1] --> [0,1]x[0,1] Peano Surjection -T defined with 6 digits-
94-102 reference(s)
Bidimensional Hilbert Curve -iteration 3-
95-102 reference(s)
Bidimensional Hilbert Curve -iteration 5-
96-102 reference(s)
Bidimensional Hilbert Curve -iteration 3-
97-102 reference(s)
Anaglyph -blue=right, red=left- of the tridimensional Hilbert Curve -iteration 3-
98-102 reference(s)
A set of 4x3 stereograms of the tridimensional Hilbert Curve -iteration 3-
99-102 reference(s)
Tridimensional fractal Self-Portrait
100-102 reference(s)
The prime numbers among the 8 first integer numbers on a Tridimensional Hilbert Curve -iteration 1-
101-101 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} -iteration 1-
102-101 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...),Z<SUB>2</SUB>(...)} and based on an 'open' 7-foil torus knot -iteration 2-
103-101 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...),Z<SUB>2</SUB>(...)} and based on an 'open' 5-foil torus knot -iteration 2-
104-101 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} and based on an 'open' 5-foil torus knot -iteration 1-
105-101 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>1</SUB>(...),Y<SUB>1</SUB>(...),Z<SUB>1</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 1-
106-101 reference(s)
The bidimensional [0,1] --> [0,1]x[0,1] Peano Surjection -T defined with 4 digits-
107-101 reference(s)
Tridimensional Hilbert Curve defined by means of the [0,1] --> [0,1]x[0,1]x[0,1] Peano Surjection -T defined with 6 digits-
108-101 reference(s)
Tridimensional Hilbert Curve -iteration 3-
109-101 reference(s)
Tridimensional Hilbert Curve -iteration 1-
110-101 reference(s)
Tridimensional Hilbert Curve -iteration 3-
111-101 reference(s)
Tridimensional fractal Self-Portrait
112-101 reference(s)
The prime numbers among the 16 first integer numbers on a Bidimensional Hilbert Curve -iteration 2-
113-100 reference(s)
The 8 first digits -base 10- of 'pi' on a Tridimensional Hilbert Curve -iteration 1-
114-100 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...),Z<SUB>4</SUB>(...)} and based on an 'open' 7-foil torus knot -iteration 4-
115-100 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>5</SUB>(...),Y<SUB>5</SUB>(...),Z<SUB>5</SUB>(...)} -iteration 5-
116-100 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...)} -iteration 2-
117-100 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...)} -iteration 3-
118-100 reference(s)
Bidimensional Hilbert Curve -iteration 1-
119-100 reference(s)
Bidimensional Hilbert Curve -iteration 2-
120-100 reference(s)
Tridimensional fractal structure with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
121-100 reference(s)
A fractal Klein bottle
122-100 reference(s)
Tridimensional fractal structure
123-100 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...),Z<SUB>4</SUB>(...)} and based on an 'open' 5-foil torus knot -iteration 4-
124-99 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...),Z<SUB>4</SUB>(...)} and based on an 'open' 3-foil torus knot -iteration 4-
125-99 reference(s)
A tridimensional Peano-like curve defined with {X<SUB>2</SUB>(...),Y<SUB>2</SUB>(...),Z<SUB>2</SUB>(...)} -iteration 2-
126-99 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>4</SUB>(...),Y<SUB>4</SUB>(...)} -iteration 4-
127-99 reference(s)
A bidimensional Peano-like curve defined with {X<SUB>3</SUB>(...),Y<SUB>3</SUB>(...)} -iteration 3-
128-99 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-help.
6576 reference(s)
2-mail.01.vv
5678 reference(s)
3-Vcatalogue.11
5159 reference(s)
4-An2000.01.Fra
4356 reference(s)
5-copyright.01.
4309 reference(s)
6-xiirv_____.nota.t.
383 reference(s)
7-Fractal.11
249 reference(s)
8-AnimFractal.01.
227 reference(s)
9-xiirc_____.nota.t.
219 reference(s)
10-xiirs_____.nota.t.
186 reference(s)
11-demo_14
181 reference(s)
12-AVirtualSpaceTimeTravelMachine.Ang
119 reference(s)
13-Stereogrammes_AutoStereogrammes.01
106 reference(s)
14-catalogue.11
100 reference(s)
15-GenieLogiciel_VisualisationScientifique.01.vv
96 reference(s)
16-UlamSpiral.01.Fra
94 reference(s)
17-create.03.
90 reference(s)
18-xiac_____.nota.t.
79 reference(s)
19-GoldenTriangle.01.Fra
79 reference(s)
20-Fractal.01
71 reference(s)
21-UlamSpiral.01.Ang
70 reference(s)
22-OrdinateursEtCalculs.01.Ang
70 reference(s)
23-MonodimensionalCellularAutomata.01.Fra
68 reference(s)
24-Galerie_NewPictures.FV
67 reference(s)
25-Galerie_ArtisticCreation.FV
67 reference(s)
26-xiak_____.nota.t.
65 reference(s)
27-Fractal.21
65 reference(s)
28-Informations_AboutPicturesAnimationsAndFiles.01.Ang
64 reference(s)
29-LOG_xiMc.11
62 reference(s)
30-Galerie_GeneralitiesVisualization.FV
62 reference(s)
31-Galerie_DeterministicFractalGeometry.FV
62 reference(s)
32-Pcatalogue.11
61 reference(s)
33-present.01.
60 reference(s)
34-Galerie_CelestialMechanics.FV
60 reference(s)
35-MathematiquesPhysiqueFractales.12
59 reference(s)
36-Galerie_NumberTheory.FV
59 reference(s)
37-AProposSite.01.Fra
59 reference(s)
38-FloatingPointNumbers.01.Fra
58 reference(s)
39-Web_Mail.01.vv
57 reference(s)
40-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
57 reference(s)
41-Galerie_ParticleSystems.FV
55 reference(s)
42-Autostereograms.01.
55 reference(s)
43-LeParadoxeDeFermi.01.Fra
54 reference(s)
44-Galerie_SelfPortraits.FV
54 reference(s)
45-Galerie_ArtAndScience.FV
54 reference(s)
46-Exposition_EcolePolytechnique_FeteDeLaScience_201910
54 reference(s)
47-Informations_GoodNewsAndBadNews.01.Fra
53 reference(s)
48-AVirtualSpaceTimeTravelMachine.Fra
52 reference(s)
49-SurfaceProjector.01.Ang
51 reference(s)
50-RealNumbers.01.Fra
51 reference(s)
51-Informations_GoodNewsAndBadNews.01.Ang
51 reference(s)
52-Galerie_ImagesDesMathematiques.FV
51 reference(s)
53-Fractal.03
51 reference(s)
54-infinity.01.vv
50 reference(s)
55-NatureDesMathematiques.01.vv.Fra
49 reference(s)
56-NDimensionalDeterministicFractalSets.01.Fra
49 reference(s)
57-MouvementsRelatifs_et_ObservationsAstronomiques.01.Fra
49 reference(s)
58-LeNoeudInfini.01.Fra
49 reference(s)
59-GoldenTriangle.01.Ang
49 reference(s)
60-FaireDesMathematiques.01.Fra
49 reference(s)
61-De_L_EnseignementAssisteParOrdinateur_a_L_ExperimentationVirtuelle.01.Fra
49 reference(s)
62-xias_____.nota.t.
48 reference(s)
63-subject.01.
48 reference(s)
64-SurfaceProjector.01.Fra
48 reference(s)
65-PerteDeLAssociativite.01
48 reference(s)
66-Galerie_TextureSynthesis.FV
48 reference(s)
67-FloatingPointNumbers.01.Ang
48 reference(s)
68-FaireDeLaRecherche.01.vv
48 reference(s)
69-Polynomials_RationalNumbers.01.Fra
46 reference(s)
70-Kepler.02.
46 reference(s)
71-DieuScience.01.Fra
46 reference(s)
72-VAcatalogue.11
45 reference(s)
73-OrdinateursEtCalculs.01.Fra
45 reference(s)
74-OrdinateurMathematiquesArt.01.Fra
45 reference(s)
75-EntrelacsIntertwinings.01.Fra
45 reference(s)
76-EntrelacsIntertwinings.01.Ang
45 reference(s)
77-DecimalesPi_1_100.vv
45 reference(s)
78-NDimensionalDeterministicFractalSets.01.Ang
44 reference(s)
79-MonodimensionalCellularAutomata.01.Ang
44 reference(s)
80-ManyChaos.01.Fra
44 reference(s)
81-LeNoeudInfini.01.Ang
44 reference(s)
82-IllusionConnaissance.02
44 reference(s)
83-Galerie_BestOf.FV
44 reference(s)
84-infinity.02.vv
43 reference(s)
85-MathematiquesPhysiqueFractales.22
43 reference(s)
86-Galerie_Tributes.FV
43 reference(s)
87-Galerie_SignalProcessing.FV
43 reference(s)
88-Galerie_FluidMechanics.FV
43 reference(s)
89-ExpV_VirE.11
43 reference(s)
90-DecimalesDePi.01.Fra
43 reference(s)
91-RasoirDOccamEtMathematiques.01.vv.Fra
42 reference(s)
92-Polynomials_RationalNumbers.01.Ang
42 reference(s)
93-Galerie_Astrophysics.FV
42 reference(s)
94-xiia_____.nota.t.
41 reference(s)
95-xiaf_____.nota.t.
41 reference(s)
96-RasoirDOccamEtMathematiques.01.vv.Ang
41 reference(s)
97-NombresEtLumiere.01.vv.Fra
41 reference(s)
98-LeParadoxeDeFermi.01.Ang
41 reference(s)
99-ImagesEncadreesDisponibles.01
41 reference(s)
100-ImagesDuVirtuel.01.Fra.FV
41 reference(s)
101-GenieLogiciel.01.Fra
41 reference(s)
102-Galerie_ImagesDidactiques.FV
41 reference(s)
103-Galerie_DeterministicChaos.FV
41 reference(s)
104-Fractal.02
41 reference(s)
105-DuModeleALImage.02.Fra
41 reference(s)
106-DieuScience.01.Ang
41 reference(s)
107-DecimalesPi_100000.vv
41 reference(s)
108-ArtScience.01
41 reference(s)
109-xiirk_____.nota.t.
40 reference(s)
110-VisualisationRelief.01.vv.Fra
40 reference(s)
111-PatrimoineHumanite.02.Fra
40 reference(s)
112-MathematiquesPhysiqueFractales.02
40 reference(s)
113-MathematiquesEtRepresentations.01.vv.Ang
40 reference(s)
114-ManyChaos.01.Ang
40 reference(s)
115-ImpossibleStructures.01.Fra
40 reference(s)
116-Galerie_QuantumMechanics.FV
40 reference(s)
117-VisitesGaleriesEnfouies.01.Ang
39 reference(s)
118-VCcatalogue.11
39 reference(s)
119-Multivers.01.Fra
39 reference(s)
120-MiseEnSceneDesNombres.01.vv.Ang
39 reference(s)
121-LesApprentisDieux.01
39 reference(s)
122-Exposition_EcolePolytechnique_FeteDeLaScience_201810
39 reference(s)
123-Exposition_EcolePolytechnique_FeteDeLaScience_201510
39 reference(s)
124-ConjectureDeSyracuse_0128.Parity.vv
39 reference(s)
125-VirtualChaos.01.Fra
38 reference(s)
126-MorePages.Ang.
38 reference(s)
127-MathematiquesEtCinematographe.01.vv
38 reference(s)
128-ImpossibleStructures.01.Ang
38 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François Colonna, 2022-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2022.