Monthly Best Of on 06/28/2024




A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section-

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 06/28/2024 and last updated on 10/03/2024 17:04:53 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



The eroded Menger Sponge -iteration 3-
1-507 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
2-158 reference(s)
64 elementary bidimensional binary cellular automata with 1 white starting central point
3-158 reference(s)
Autostereogram with an hidden volcano
4-157 reference(s)
The Universe at the heart of a Calabi-Yau manifold
5-149 reference(s)
Tridimensional display of the particle density of a bidimensional snowflake-like billiard
6-135 reference(s)
A distorded -for the sake of display- 5-cube -an hyperhypercube-
7-120 reference(s)
The generalized Ulam spiral
8-109 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
9-107 reference(s)
Autostereogram of the CMAP
10-102 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
11-101 reference(s)
The first four iterations of the construction of the von Koch snowflake
12-100 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one marsian year -Earth point of view and zoom on the four first planets-
13-100 reference(s)
A set of 4x3 stereograms displaying a tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -90.000 digits, -base 10- with 30.000 time steps
14-94 reference(s)
The Goldbach conjecture
15-94 reference(s)
Tridimensional display of the Riemann Zeta function inside [-50.0,+50.0]x[-50.0,+50.0]
16-92 reference(s)
The 1089 first digits of 'pi' displayed as sets of concentric circles
17-91 reference(s)
Artistic view of the prime numbers
18-91 reference(s)
Autostereogram with an hidden volcano
19-88 reference(s)
The random walk of photons escaping the Sun
20-87 reference(s)
The random walk of photons escaping the Sun
21-86 reference(s)
The 64 first lines of the Pascal's Triangle
22-82 reference(s)
The Ulam spiral displaying 2025 numbers
23-82 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
24-82 reference(s)
An aperiodic Penrose tiling of the plane -a Tribute to Piet Mondrian and Roger Penrose-
25-81 reference(s)
The 81 first digits of 'pi' displayed as sets of concentric circles (bird's-eye view)
26-80 reference(s)
The Sierpinski Carpet -iteration 1 to 5-
27-76 reference(s)
The 5x5=25 patches of the tridimensional representation of a quadridimensional Calabi-Yau manifold
28-76 reference(s)
Evolution of a tridimensional representation of a quadridimensional Calabi-Yau manifold
29-75 reference(s)
The 500 first digits of 'pi' displayed as an Impossible Structure
30-73 reference(s)
Pseudo Olympic Rings
31-72 reference(s)
An octogonal tiling of the hyperbolic Poincaré disk -iteration 5-
32-71 reference(s)
Quark and gluon structure of a nucleon
33-71 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5-
34-71 reference(s)
Fractal synthesis of mountains and clouds
35-70 reference(s)
Tridimenional display of the Goldbach conjecture
36-70 reference(s)
A fractal Möbius strip
37-69 reference(s)
About the length of the von Koch curve
38-68 reference(s)
The Continuum Hypothesis (CH)
39-68 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
40-67 reference(s)
Black dots on a square lattice
41-66 reference(s)
Tridimensional display of the Riemann Zeta function inside [-10.0,+20.0]x[-15.0,+15.0] (bird's-eye view)
42-65 reference(s)
Artistic view of the Big Bang
43-65 reference(s)
Numerical value table -trigonometric functions-
44-65 reference(s)
The control panel of a 1972 Télémécanique T1600 computer
45-65 reference(s)
Two multiplexed autostereograms by means of a pi/2 rotation
46-65 reference(s)
Bidimensional display of the rounding-off errors when computing the Verhulst dynamics
47-64 reference(s)
Untitled 0625
48-64 reference(s)
The genesis of the 'EinStein' aperiodic 'Spectre' tile -top right-
49-63 reference(s)
The 81 first digits of 'pi' displayed as sets of concentric various curves (bird's-eye view)
50-63 reference(s)
Tridimensional display of the Riemann Zeta function inside [+0.1,+0.9]x[0,+50]
51-62 reference(s)
An aperiodic Penrose tiling of the plane
52-62 reference(s)
A pay slip
53-62 reference(s)
The generalized Ulam spiral displaying 100 numbers
54-62 reference(s)
From 'geocentrism' to 'heliocentrism'
55-62 reference(s)
The Syracuse conjecture for U(0)={5,6,7,8,...,20} -tridimensional display-
56-61 reference(s)
Happy birthday
57-61 reference(s)
Tridimensional display of a spiral displaying 'pi' with 4.000 digits -base 10-
58-61 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 141592... -100.001 digits, -base 10- into 303142... -128.509 digits, -base 6-
59-61 reference(s)
Jean-François COLONNA (on 11/17/1994)with its fractal mountains
60-61 reference(s)
Rotation about the Y (vertical)axis of the CMAP logo that can also be viewed as a set of 4x3 stereograms
61-61 reference(s)
The Syracuse conjecture for U(0)={5,6,7,8,...,20} -tridimensional display-
62-60 reference(s)
The construction process of the Sierpinski Carpet
63-60 reference(s)
A variable Archimedes spiral displaying 1000 numbers
64-60 reference(s)
The first four iterations of the construction of the von Koch snowflake
65-59 reference(s)
The Klein bottle defined by means of three bidimensional fields
66-59 reference(s)
The Liouville function displayed as a bidimensional random walk for the integer numbers from 2 to 100001
67-59 reference(s)
An hexagonal tiling of the hyperbolic Poincaré disk -iteration 5-
68-59 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -10.000 digits, -base 10- into 050330... -12.849 digits, -base 6-
69-59 reference(s)
Larsen effect
70-59 reference(s)
The quaternionic Julia set computed with A=(0,1,0,0)-tridimensional cross-section-
71-59 reference(s)
Tridimensional display of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
72-59 reference(s)
Recursive subdivision of four Golden Rectangles -a Tribute to Piet Mondrian-
73-58 reference(s)
24 evenly distributed points on a sphere by means of simulated annealing
74-58 reference(s)
The 256 first digits -base 10- of 'pi' on a Bidimensional Hilbert Curve -iteration 4- mapped on a sphere
75-58 reference(s)
The additive persistence of the 65536 first integer numbers for the bases 2 -lower left- to 17 -upper right-
76-58 reference(s)
A pseudo-octonionic Mandelbrot set (a 'MandelBulb')-'children's corner' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-
77-58 reference(s)
Cantor's diagonal argument
78-58 reference(s)
An aperiodic Penrose tiling of the plane
79-57 reference(s)
Along the border of the Mandelbrot set
80-57 reference(s)
An extended Menger Sponge -iteration 4- displaying the 108 first digits -base 2- of 'pi'
81-57 reference(s)
Hypercube
82-57 reference(s)
Zoom in on the von Koch curve
83-56 reference(s)
Quantum vacuum fluctuations
84-56 reference(s)
Artistic view of the Big Bang
85-56 reference(s)
The Borromean Rings
86-56 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of a fractal tridimensional space-
87-56 reference(s)
Bidimensional brownian motion -the colors used (magenta,red,yellow,green,cyan)are an increasing function of the time- and its 'external border' -white-
88-56 reference(s)
An elementary monodimensional binary cellular automaton -90- with 49 white starting points -on the bottom line-
89-56 reference(s)
The Boy surface in motion
90-55 reference(s)
The 81 first digits of 'pi' displayed as sets of concentric various curves (bird's-eye view)
91-55 reference(s)
The 81 first digits of 'pi' displayed as sets of concentric various curves
92-55 reference(s)
The multiplicative persistence of the 65536 first integer numbers for the bases 2 -lower left- to 17 -upper right-
93-55 reference(s)
Fractal Self-Portrait -a Tribute to René Magritte-
94-55 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
95-55 reference(s)
Tridimensional display of the Riemann Zeta function inside [-50.0,+50.0]x[-50.0,+50.0] (bird's-eye view)
96-54 reference(s)
A fractal vegetal structure
97-54 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -90.000 digits, -base 10- with 30.000 time steps
98-54 reference(s)
The same bidimensional scalar field displayed with 4 different color palettes
99-54 reference(s)
N-body problem integration (N=10)displaying the actual Solar System
100-54 reference(s)
The Menger Sponge -iteration 5-
101-54 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of our familiar tridimensional space?-
102-54 reference(s)
About the fractal dimension with the first two iterations -red and magenta respectively- of the construction of the von Koch curve
103-53 reference(s)
Zoom in on the von Koch curve
104-53 reference(s)
Untitled 0320
105-53 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 141592... -100.001 digits, -base 10- into 303142... -128.509 digits, -base 6-
106-53 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 141592... -100.001 digits, -base 10- into 303142... -128.509 digits, -base 6-
107-53 reference(s)
Monument Valley at sunrise
108-53 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
109-53 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
110-53 reference(s)
Artistic view of the Cosmic Web (nodes, galaxy clusters, filaments,... including 1.083.984 galaxies)obtained by means of a non deterministic fractal process
111-53 reference(s)
The construction process of an aperiodic Penrose tiling -3 random subdivision iterations-
112-52 reference(s)
The Syracuse conjecture for U(0)={5,6,7,8,...,20} -bidimensional display-
113-52 reference(s)
Dissonance chaude/Dissonance froide -a Tribute to Paul Sérusier-
114-52 reference(s)
An interpolation between the Möbius strip and a 'double sphere' defined by means of three sets of bidimensional fields
115-52 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -90.000 digits, -base 10- with 30.000 time steps
116-52 reference(s)
The 1089 first digits of 'pi' displayed as sets of concentric various curves
117-52 reference(s)
The foggy Babel Tower -a Tribute to Brueghel the Elder-
118-52 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -Pluto point of view-
119-52 reference(s)
The 32 vertices of a 5-cube
120-52 reference(s)
Maurits Cornelis Escher meets Piet Mondrian
121-52 reference(s)
Quadruple impossible staircase built by means of a paradoxal structure -a Tribute to Maurits Cornelis Escher-
122-52 reference(s)
An aperiodic Penrose tiling of the plane
123-51 reference(s)
A fractal vegetal structure -'the Knowledge Tree'-
124-51 reference(s)
Generation of the 63x63 first Conway's surreal complex numbers
125-51 reference(s)
Autostereogram with an hidden ring and ghost bows
126-51 reference(s)
The evolution of the sphere using the Lorenz attractor
127-51 reference(s)
The special Liouville function displayed as a bidimensional random walk for the integer numbers from 2 to 100001
128-51 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-AVirtualSpaceTimeTravelMachine.Ang
1713 reference(s)
2-demo_14
176 reference(s)
3-xiirf_____.nota.t.
151 reference(s)
4-Web_Mail.01.vv
137 reference(s)
5-xiirv_____.nota.t.
124 reference(s)
6-EnsembleDesGaleries.DIAPO.0978
122 reference(s)
7-Stereogrammes_AutoStereogrammes.01
105 reference(s)
8-Fractal.01
93 reference(s)
9-UlamSpiral.01.Fra
86 reference(s)
10-Galerie_NumberTheory.FV
84 reference(s)
11-catalogue.11
82 reference(s)
12-Fractal.21
79 reference(s)
13-ChatGPT.01.Fra
79 reference(s)
14-BEST.20070728
75 reference(s)
15-Vcatalogue.11
72 reference(s)
16-An2000.01.Fra
72 reference(s)
17-mail.01.vv
71 reference(s)
18-Galerie_Pi.FV
69 reference(s)
19-ImagesDuVirtuel.01.Fra.FV
68 reference(s)
20-Fractal.11
68 reference(s)
21-help.
66 reference(s)
22-xciP_____interpole.01.z.
65 reference(s)
23-DecimalesDePi.01.Fra
65 reference(s)
24-xiirs_____.nota.t.
62 reference(s)
25-LOG_xiMc.11
62 reference(s)
26-EnsembleDesGaleries.DIAPO.0001
62 reference(s)
27-NombresPremiers_10000.vv
61 reference(s)
28-IAGenerativesImages.01.Fra
58 reference(s)
29-AProposSite.01.Fra
58 reference(s)
30-NombresEtLumiere.01.vv.Fra
57 reference(s)
31-Galerie_ArtisticCreation.FV
57 reference(s)
32-Pcatalogue.11
56 reference(s)
33-ExpV_VirE.11
56 reference(s)
34-EntrelacsIntertwinings.01.Fra
56 reference(s)
35-De_L_EnseignementAssisteParOrdinateur_a_L_ExperimentationVirtuelle.01.Fra
55 reference(s)
36-Polynomials_RationalNumbers.01.Fra
54 reference(s)
37-Multivers.01.Fra
54 reference(s)
38-Galerie_ImagesDesMathematiques.FV
54 reference(s)
39-FloatingPointNumbers.01.Fra
54 reference(s)
40-EnsembleDesGaleries.DIAPO.0979
53 reference(s)
41-AVirtualSpaceTimeTravelMachine.Fra
53 reference(s)
42-PatrimoineHumanite.02.Fra
52 reference(s)
43-MouvementsRelatifs_et_ObservationsAstronomiques.01.Fra
52 reference(s)
44-FloatingPointNumbers.01.Ang
52 reference(s)
45-Exposition_EcolePolytechnique_FeteDeLaScience_201910
52 reference(s)
46-copyright.01.
51 reference(s)
47-PerteDeLAssociativite.01
51 reference(s)
48-Informations_GoodNewsAndBadNews.01.Ang
51 reference(s)
49-Galerie_NewPictures.FV
51 reference(s)
50-Informations_AboutPicturesAnimationsAndFiles.01.Ang
50 reference(s)
51-Galerie_Tributes.FV
49 reference(s)
52-SurfaceProjector.01.Ang
48 reference(s)
53-GoldenTriangle.01.Fra
48 reference(s)
54-Galerie_ArtAndScience.FV
48 reference(s)
55-Kepler.02.
47 reference(s)
56-EnsembleDesGaleries.DIAPO.0590
47 reference(s)
57-ConjectureDeSyracuse_0128.Parity.vv
47 reference(s)
58-xiia_____.nota.t.
46 reference(s)
59-Bard.01.Ang
46 reference(s)
60-IAGenerativesImages.01.Ang
45 reference(s)
61-Informations_GoodNewsAndBadNews.01.Fra
44 reference(s)
62-GoldenTriangle.01.Ang
44 reference(s)
63-FaireDesMathematiques.01.Fra
44 reference(s)
64-LesCourbesRemplissantes.02.Fra
43 reference(s)
65-LeParadoxeDeFermi.01.Ang
43 reference(s)
66-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
43 reference(s)
67-Fractal.02
43 reference(s)
68-DieuScience.01.Fra
43 reference(s)
69-Fractal.03
42 reference(s)
70-ExpV_VirE.Ang
42 reference(s)
71-xrs_____CalabiYau.22.K.
41 reference(s)
72-MonodimensionalCellularAutomata.01.Fra
41 reference(s)
73-LeNoeudInfini.01.Fra
41 reference(s)
74-Galerie_ImagesEssentiellesDesMathematiques.FV
41 reference(s)
75-Galerie_ImagesDidactiques.FV
41 reference(s)
76-Exposition_EcolePolytechnique_NuitDesChercheurs_201309
41 reference(s)
77-NombresEtLumiere.02.vv.Ang
40 reference(s)
78-Galerie_NumbersAndLight.FV
40 reference(s)
79-Exposition_MairieCinquiemeArrondissementParis_202001_202002
40 reference(s)
80-DieuScience.01.Ang
40 reference(s)
81-DecimalesPi_1_100.vv
40 reference(s)
82-xrs_____CalabiYau.87.I.
39 reference(s)
83-xcg_____z_COHX.01.K.
39 reference(s)
84-VisitesGaleriesEnfouies.01.Ang
39 reference(s)
85-MathematiquesPhysiqueFractales.02
39 reference(s)
86-DuModeleALImage.02.Fra
39 reference(s)
87-AnimFractal.01.
39 reference(s)
88-xrq_____particle.M5.I.
38 reference(s)
89-FaireConnaitre_FaireAimer_LesMathematiques.01.Fra
38 reference(s)
90-DecimalesPi_100000.vv
38 reference(s)
91-Notations_AppartientA.01
37 reference(s)
92-xiirk_____.nota.t.
36 reference(s)
93-xciP_____luminance.01.z.
36 reference(s)
94-OrdinateursEtCalculs.01.Fra
36 reference(s)
95-LesCourbesRemplissantes.01.Ang
36 reference(s)
96-GenieLogiciel.01.Fra
36 reference(s)
97-Commentaires_NKleinBottle.01
36 reference(s)
98-xrs_____cylindre.21.I.
35 reference(s)
99-xiird_____.AC2B.3.11..u.
35 reference(s)
100-RealNumbers.01.Fra
35 reference(s)
101-ChatGPT.01.Ang
35 reference(s)
102-ArtScience.01
35 reference(s)
103-xrk_____SinCos.11.K.
34 reference(s)
104-xivP_d09_f2_____.REFL.E.12.2..u.
34 reference(s)
105-relai_universel.01.vv
34 reference(s)
106-fractal.01
34 reference(s)
107-Polynomials_RationalNumbers.01.Ang
34 reference(s)
108-NatureDesMathematiques.01.vv.Fra
34 reference(s)
109-MesExpositionsPassees.01
34 reference(s)
110-ImpossibleStructures.01.Ang
34 reference(s)
111-EnsembleDesGaleries.DIAPO.0954
34 reference(s)
112-EnsembleDesGaleries.DIAPO.0591
34 reference(s)
113-Autostereograms.01.
34 reference(s)
114-xrs_____sphere.19.I.
33 reference(s)
115-xrs_____bKlein.14.I.
33 reference(s)
116-xrs_____CalabiYau.42.K.
33 reference(s)
117-xrc_____tric_cos.81.K.
33 reference(s)
118-xci_____o_carre.81.K.
33 reference(s)
119-xDarchivesG__CMS5__sources__CMS5_____SIS_CMS5_1
33 reference(s)
120-real.01.vv.
33 reference(s)
121-VirtualChaos.01.Fra
33 reference(s)
122-VirtualChaos.01.Ang
33 reference(s)
123-SurfaceProjector.01.Fra
33 reference(s)
124-RasoirDOccamEtMathematiques.01.vv.Fra
33 reference(s)
125-NDimensionalDeterministicFractalSets.01.Fra
33 reference(s)
126-MorePages.Ang.
33 reference(s)
127-MartiensEtMathematiques.01.Ang
33 reference(s)
128-Le_Chat.01.Ang
33 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2024-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2024-2024.