Along the border of the Mandelbrot set [Le long de la frontière de l'ensemble de Mandelbrot].




See the dynamics of this phenomenon in the complex plane:



See the dynamics of the complex Julia sets:



See the dynamics of the pseudo-octonionic Julia sets:




See the iteration process used in order to define the Mandelbrot set:




See the connexity of the Mandelbrot set:




See some related zoom in pictures:




[More information -in english/en anglais-]



L'ensemble de Mandelbrot:

Gaston Julia et Pierre Fatou avaient déjà, au début du vingtième siècle, pressenti la richesse des itérations de polynômes dans le plan complexe. Mais malheureusement, il leur manquait un outil de calcul. Benoît Mandelbrot, au centre Thomas Watson IBM, eut à sa disposition, dans les années soixante, les moyens de calcul et de visualisation les plus modernes de l'époque, ce qui lui permit de révéler des merveilles. L'ensemble éponyme (figure en haut et à droite) est obtenu en itérant en chaque point C du plan le polynôme Z2+C afin de voir si la suite des Z obtenus reste à distance finie de l'origine ou pas. Sa structure est infiniment riche: à toutes les échelles d'observation, d'incroyables motifs apparaissent (figure en bas et à droite) dont certains ressemblent à l'ensemble entier (c'est l'autosimilarité). Enfin, à gauche est présenté, de deux façons différentes, l'ensemble de Julia associé au point A marqué par une croix blanche tracée sur l'ensemble de Mandelbrot.


[Plus d'informations -en français/in french-]


(CMAP28 WWW site: this page was created on 02/05/1997 and last updated on 10/06/2024 09:49:18 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 1997-2024.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 1997-2024.