2 ----> i=N d OC ----- M k \ i -----> --------- = / G ----------- C C 2 ----- 3 k i dt i=1 |----->| (i#k) | C C | k iBy means of a numerical integration method, the preceding system of differential equations is integrated. The trajectory of each body is then known as a set of points:
-------> ----------> ----------> ----------> S = { OC (0) , OC (1.dt) , OC (2.dt) ,..., OC (n.dt) ,...} k k k k k'dt' denoting the integration time step. This allows us to display the motion of the 9 planets using all the computed sets S(k) for the N=9+1 main bodies of the Solar System:
/ -------> ----------> ----------> ----------> | S = { OC (0) , OC (1.dt) , OC (2.dt) ,..., OC (n.dt) ,...} | 1 1 1 1 1 | | -------> ----------> ----------> ----------> | S = { OC (0) , OC (1.dt) , OC (2.dt) ,..., OC (n.dt) ,...} < 2 2 2 2 2 | | (...) | | -------> ----------> ----------> ----------> | S = { OC (0) , OC (1.dt) , OC (2.dt) ,..., OC (n.dt) ,...} \ N N N N NInstead of using a fixed point O (in the preceding lines, this point was in the close neighbourhood of the Sun) in order to visualize the trajectories, it is possible to use a moving one and in particular, the arbitrary body number R. For the body number k, the set of points to be visualized becomes:
-------> -------> ----------> ----------> ----------> ----------> ----------> ----------> S' = {[ OC (0) - OC (0) ] , [ OC (1.dt) - OC (1.dt) ] , [ OC (2.dt) - OC (2.dt) ] ,..., [ OC (n.dt) - OC (n.dt) ] ,...} k k R k R k R k RUsing this simple idea will give us very new visualizations of the Solar System as exhibited in the following lines...