Monthly Best Of on 08/28/2018




A Peano 'fractal plane' defined by means of three bidimensional fields

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 08/28/2018 and last updated on 10/03/2024 17:03:44 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



A fractal vegetal structure
1-973 reference(s)
Happy new year 2000
2-181 reference(s)
The random walk of photons escaping the Sun
3-176 reference(s)
64 elementary bidimensional binary cellular automata with 1 white starting central point
4-169 reference(s)
Erosion of a bidimensional random (with small and large scale correlations)medium
5-164 reference(s)
Autostereogram with an hidden volcano
6-155 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
7-135 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
8-108 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
9-106 reference(s)
Tridimensional display of the Riemann Zeta function inside [-50.0,+50.0]x[-50.0,+50.0] (bird's-eye view)
10-103 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
11-102 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
12-96 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of a fractal tridimensional space-
13-87 reference(s)
Hypercube
14-81 reference(s)
The Bonan-Jeener-Klein triple bottle
15-78 reference(s)
The random walk of photons escaping the Sun
16-74 reference(s)
The bidimensional John Conway's life game
17-73 reference(s)
The journey of an Earth-like virtuel planet (green)from Pluto (grey) to the Sun (yellow) -point of view of the virtual planet-
18-72 reference(s)
Artistic view of the prime numbers
19-72 reference(s)
Bidimensional quasi-symmetrical fractal aggregate obtained by means of a 100% pasting process during collisions of particles submitted to an attractive central field of gravity
20-70 reference(s)
The Menger Sponge -iteration 5-
21-70 reference(s)
An elementary monodimensional binary cellular automaton -90- with 49 white starting points -on the bottom line-
22-65 reference(s)
The generalized Ulam spiral
23-64 reference(s)
Quantum vacuum fluctuations
24-60 reference(s)
Autostereogram with an hidden volcano
25-56 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
26-53 reference(s)
The pseudo-sphere
27-48 reference(s)
Autostereogram with an hidden volcano
28-47 reference(s)
Dynamics of the even distribution of 24 points on a sphere by means of simulated annealing
29-47 reference(s)
Monument Valley at sunrise with light cloud dynamics -this sequence being periodical-
30-47 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
31-46 reference(s)
The Jeener-Klein triple bottle
32-46 reference(s)
An Archimedes spiral displaying 5000 numbers
33-44 reference(s)
The Möbius strip
34-44 reference(s)
Sixteen interlaced fractal torus
35-43 reference(s)
A fractal Möbius strip
36-43 reference(s)
Bidimensional texture animation by means of the Generalized Product
37-42 reference(s)
From Mars to the Sun
38-42 reference(s)
The random walk of photons escaping the Sun
39-41 reference(s)
Tridimensional display of the particle density of a bidimensional periodical fluid with strictly identical initial velocities and with a vertically shifted central obstacle
40-41 reference(s)
Bidimensional rectangular billiard with a central obstacle and an initial flow of rotating particles
41-41 reference(s)
Dynamics of the even distribution of 6 points on a sphere -an Octahedron- by means of simulated annealing
42-41 reference(s)
Pseudo Olympic Rings
43-41 reference(s)
Tridimensional texture animation by means of the Generalized Product
44-41 reference(s)
Bidimensional zoom in on the Mandelbrot set with display of the arguments
45-41 reference(s)
Bidimensional Hilbert Curve -iteration 4-
46-41 reference(s)
Bidimensional geometrical texture animation
47-40 reference(s)
A bidimensional periodical fluid with strictly identical initial velocities and with a vertically shifted central obstacle
48-40 reference(s)
Tridimensional zoom in on the Mandelbrot set
49-40 reference(s)
Quaternionic Julia sets along the border of the Mandelbrot set -tridimensional cross-sections-
50-40 reference(s)
A tridimensional fractal manifold defined by means of three tridimensional fields
51-38 reference(s)
A fractal Klein bottle
52-38 reference(s)
Autostereogram with an hidden volcano
53-37 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
54-37 reference(s)
Tridimensional Hilbert Curve -iteration 3-
55-35 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
56-35 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
57-35 reference(s)
The Universe at the heart of a Calabi-Yau manifold
58-34 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -Pluto point of view-
59-34 reference(s)
A 1972 Télémécanique T1600 computer with a 32 KB central memory and two 512 KB disk drives
60-33 reference(s)
The Sierpinski Carpet -iteration 5-
61-32 reference(s)
A pseudo-octonionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-
62-32 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
63-32 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
64-31 reference(s)
The Lorenz attractor
65-31 reference(s)
Isle of the Dead -a Tribute to Arnold Böcklin-
66-29 reference(s)
Tridimensional display of the Riemann Zeta function inside [-10.0,+20.0]x[-15.0,+15.0] (bird's-eye view)
67-28 reference(s)
An aperiodic Penrose tiling of the Golden Decagon
68-27 reference(s)
Artistic view of the Cosmic Web (nodes, galaxy clusters, filaments,... including 637.312 galaxies)obtained by means of a non deterministic fractal process
69-27 reference(s)
A fractal vegetal structure -'the Knowledge Tree'-
70-26 reference(s)
The Sierpinski Carpet -iteration 1 to 5-
71-26 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
72-25 reference(s)
The Boy surface
73-25 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -the Sun point of view-
74-25 reference(s)
A spherical cross-section inside the Menger Sponge -iteration 5-
75-25 reference(s)
Metropolis -a Tribute to Fritz Lang-
76-25 reference(s)
A tridimensional pseudo-random walk defined by means of 'pi': 3.141592... -100.000 digits, -base 10- into 050330... -128.508 digits, base 6-
77-25 reference(s)
Tridimensional representation of a fractal quadridimensional Calabi-Yau manifold
78-25 reference(s)
The Jeener-Klein triple bottle
79-24 reference(s)
A tridimensionally distorded aperiodic Penrose tiling of the plane
80-23 reference(s)
Autostereogram with an hidden ring and ghost bows
81-23 reference(s)
An interpolation between the Möbius strip and a 'double sphere' defined by means of three sets of bidimensional fields
82-23 reference(s)
An Archimedes spiral displaying 100000 numbers
83-23 reference(s)
Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb')-tridimensional cross-section-
84-23 reference(s)
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) and with a rotation about the Y axis and with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
85-23 reference(s)
A perfect bidimensional fractal tree and the self-similarity
86-22 reference(s)
The foggy Babel Tower -a Tribute to Brueghel the Elder-
87-22 reference(s)
The Menger Sponge -iteration 5- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section-
88-22 reference(s)
An aperiodic non linear Penrose tiling of the plane
89-21 reference(s)
Monument Valley à la David Hockney
90-21 reference(s)
Monument Valley à la David Hockney
91-21 reference(s)
A parallelepipedic extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
92-21 reference(s)
Untitled 0277
93-21 reference(s)
Untitled 0276
94-21 reference(s)
The Goldbach conjecture -the Goldbach comet or the Goldbach rainbow- for the even numbers from 6 to 41518
95-21 reference(s)
A fractal aperiodic Penrose tiling
96-21 reference(s)
An aperiodic Penrose tiling of the plane
97-20 reference(s)
Two multiplexed autostereograms by means of a pi/2 rotation
98-20 reference(s)
True colors autostereogram of a fractal landscape
99-20 reference(s)
Electronic circuit blueprint
100-20 reference(s)
Tridimensional display of the inflationary Universe
101-20 reference(s)
The Goldbach conjecture -the Goldbach comet- for the even numbers from 6 to 6244
102-20 reference(s)
The normal field of a tridimensional representation of a quadridimensional Calabi-Yau manifold
103-20 reference(s)
Where is the Multiverse?
104-19 reference(s)
Along the border of the Mandelbrot set
105-19 reference(s)
True colors autostereogram of a quaternionic Julia set -tridimensional cross-section-
106-19 reference(s)
Autostereogram with an hidden ring and ghost bows
107-19 reference(s)
A random permutation of pixel blocks of a Self-Portrait
108-19 reference(s)
Quark and gluon structure of a nucleon
109-19 reference(s)
The Solar System with a dark blue virtual planet -heliocentric point of view-
110-19 reference(s)
A half-random extended Menger Sponge -iteration 5-
111-19 reference(s)
Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb')with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
112-19 reference(s)
A fractal Möbius strip
113-19 reference(s)
From the infinitely small to the infinitely big
114-19 reference(s)
Bidimensional display of the rounding-off errors when computing the Verhulst dynamics
115-18 reference(s)
The first autostereogram movie about quaternionic Julia sets -tridimensional cross-sections-
116-18 reference(s)
A punched paper tape
117-18 reference(s)
The Klein bottle defined by means of three bidimensional fields
118-18 reference(s)
An Archimedes spiral displaying 10000 numbers
119-18 reference(s)
Quark and gluon structure of a nucleon
120-18 reference(s)
A 'pyramidal' cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-, 'Ô temps tes pyramides' -a Tribute to Jorge Luis Borges-
121-18 reference(s)
Untitled 0275
122-18 reference(s)
A quaternionic Julia set -tridimensional cross-section-
123-18 reference(s)
An aperiodic Penrose tiling of the plane
124-17 reference(s)
24 evenly distributed points on a sphere by means of simulated annealing
125-17 reference(s)
4 evenly distributed points on a sphere -a Tetrahedron- by means of simulated annealing
126-17 reference(s)
'There is a war' -a Tribute to Leonard Cohen-
127-17 reference(s)
Paradoxal Monument Valley at sunset, 'World of Tiers' -a Tribute to Philip José Farmer-
128-17 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-Vcatalogue.11
4569 reference(s)
2-demo_14
1130 reference(s)
3-ImagesDuVirtuel.01.Fra
1014 reference(s)
4-An2000.01.Fra
772 reference(s)
5-An2000.01.Ang
533 reference(s)
6-Fractal.11
462 reference(s)
7-ComplexiteStructurelleClassements.11
457 reference(s)
8-LesApprentisDieux.01
440 reference(s)
9-MathematiquesModeleOutilArtiste.02.Ang
381 reference(s)
10-MathematiquesPhysiqueFractales.22
355 reference(s)
11-Galerie_DeterministicFractalGeometry.FV
355 reference(s)
12-MorePages.
342 reference(s)
13-present.01.
313 reference(s)
14-AnimFractal.01.
311 reference(s)
15-OrdinateurMathematiquesArt.01.Fra
305 reference(s)
16-ImagesDuVirtuel.01.Fra.FV
303 reference(s)
17-help.
299 reference(s)
18-ExpV_VirE.Fra
299 reference(s)
19-infinity.01.vv
298 reference(s)
20-Galerie_NumberTheory.FV
283 reference(s)
21-create.03.
276 reference(s)
22-Galerie_GeneralitiesVisualization.FV
268 reference(s)
23-DieuScience.01.Fra
263 reference(s)
24-CompressionDeCompression_ComplexiteStructurelle.CDCM3_A1.03
261 reference(s)
25-RealNumbers.01.Fra
260 reference(s)
26-Galerie_ArtisticCreation.FV
259 reference(s)
27-AVirtualSpaceTimeTravelMachine.Ang
244 reference(s)
28-EntrelacsIntertwinings.01.Ang.DIAPO.0254
233 reference(s)
29-GenieLogiciel.01.Fra
229 reference(s)
30-subject.01.
227 reference(s)
31-an2000
225 reference(s)
32-LOG_xiMc.11
225 reference(s)
33-Galerie_NumberTheory
224 reference(s)
34-Autostereograms.01.
218 reference(s)
35-Galerie_NumberTheory.DIAPO.0137
217 reference(s)
36-EnsembleDesGaleriesFractales.DIAPO.0248
214 reference(s)
37-FloatingPointNumbers.01.Ang
213 reference(s)
38-DuModeleALImage.02.Fra
207 reference(s)
39-Galerie_ParticleSystems.FV
203 reference(s)
40-EnsembleDesGaleries.DIAPO.0365
202 reference(s)
41-Galerie_GeneralitiesVisualization.DIAPO.0167
198 reference(s)
42-Galerie_SalonDAutomne
194 reference(s)
43-Galerie_ArtAndScience.DIAPO.0182
194 reference(s)
44-Stereogrammes_AutoStereogrammes.01
193 reference(s)
45-Galerie_SensitivityToRoundingOffErrors.FV
193 reference(s)
46-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
192 reference(s)
47-MouvementsRelatifs_et_ObservationsAstronomiques.01.Fra
191 reference(s)
48-Galerie_QuantumMechanics.FV
188 reference(s)
49-Galerie_ArtAndScience
188 reference(s)
50-EnsembleDesGaleries.DIAPO.0569
188 reference(s)
51-catalogue.11
186 reference(s)
52-xrC_____OBJC.C44__1_______.11.PlansDeBits.t.
183 reference(s)
53-xrC_____OBJC.X3___1_______.11.Recursive.t.
182 reference(s)
54-Commentaires_NKleinBottle.01
182 reference(s)
55-EnsembleDesGaleries.DIAPO.0388
181 reference(s)
56-CompressionDeCompression_ComplexiteStructurelle.CDCM4_CDC_C.01
181 reference(s)
57-Kepler.02.
180 reference(s)
58-NDimensionalDeterministicFractalSets.01.Fra
179 reference(s)
59-Fractal.21
179 reference(s)
60-Galerie_DeterministicChaos.FV
178 reference(s)
61-mail.01.vv
177 reference(s)
62-Galerie_ArtAndScience.FV
177 reference(s)
63-AVirtualSpaceTimeTravelMachine.Fra
175 reference(s)
64-FloatingPointNumbers.01.Fra
174 reference(s)
65-SurfaceProjector.01.Ang
172 reference(s)
66-Galerie_SalonDAutomne.FV
172 reference(s)
67-Galerie_NewPictures.FV
172 reference(s)
68-CompressionDeCompression_ComplexiteStructurelle.bzip2_ZP.01
172 reference(s)
69-SurfaceProjector.01.Fra
169 reference(s)
70-UlamSpiral.01.Fra
168 reference(s)
71-FaireDeLaRecherche.01.vv
168 reference(s)
72-xDarchivesG__CMS5__sources__CMS5_____SIS_CMS5_4
167 reference(s)
73-T_PerteDeLAssociativite.01_ProblemesNombresFlottants.02.0005
167 reference(s)
74-CompressionDeCompression_ComplexiteStructurelle.Optimal_R.04
166 reference(s)
75-BEST.20000517
166 reference(s)
76-Galerie_DeterministicFractalGeometry.DIAPO.0085
165 reference(s)
77-Galerie_Astrophysics.FV
165 reference(s)
78-RemarquesCerveau.01
163 reference(s)
79-GoldenTriangle.01.Fra
161 reference(s)
80-GenieLogiciel_VisualisationScientifique.01.vv
161 reference(s)
81-ExpV_VirE.11
161 reference(s)
82-ManyChaos.01.Fra
160 reference(s)
83-demo.14
159 reference(s)
84-VisualisationRelief.01.vv.Fra
159 reference(s)
85-Galerie_ArtisticCreation.DIAPO.0103
159 reference(s)
86-FaireConnaitre_FaireAimer_LesMathematiques.01.Fra
159 reference(s)
87-EnsembleDesGaleries.DIAPO.0353
159 reference(s)
88-logiciel
158 reference(s)
89-demo
158 reference(s)
90-Informations_GoodNewsAndBadNews.01.Ang
158 reference(s)
91-nombresreels
157 reference(s)
92-copyright.01.
157 reference(s)
93-EntrelacsIntertwinings.01.Ang.DIAPO.0044
157 reference(s)
94-ArtScience.01
157 reference(s)
95-realnumbers
156 reference(s)
96-MathematiquesPhysiqueFractales.02
156 reference(s)
97-GenieLogiciel.01.Ang
156 reference(s)
98-AVirtualSpaceTimeTravelMachine.Fra.FV
156 reference(s)
99-demo14
155 reference(s)
100-AProposSite.01.Fra
155 reference(s)
101-genielogiciel
154 reference(s)
102-MathematiquesEtCinematographe.01.vv
153 reference(s)
103-CompressionDeCompression_ComplexiteStructurelle.CDCM1_I1.01
153 reference(s)
104-FaireDesMathematiques.01.Fra
152 reference(s)
105-Fractal.01
151 reference(s)
106-Galerie_BestOf.FV
150 reference(s)
107-Galerie_TextureSynthesis.DIAPO.0099
149 reference(s)
108-EntrelacsIntertwinings.01.Fra
149 reference(s)
109-EnsembleDesGaleriesFractales.DIAPO.0221
149 reference(s)
110-Galerie_SignalProcessing.FV
148 reference(s)
111-EntrelacsIntertwinings.01.Ang.DIAPO.0067
148 reference(s)
112-ConjectureDeSyracuse_0256.vv
148 reference(s)
113-ManyChaos.01.Ang
147 reference(s)
114-Galerie_FluidMechanics.FV
147 reference(s)
115-MonodimensionalCellularAutomata.01.Ang
146 reference(s)
116-CompressionDeCompression_ComplexiteStructurelle.Optimal_CDC_B.01
146 reference(s)
117-CompressionDeCompression_ComplexiteStructurelle.JPEG2000_CDC_F.01
146 reference(s)
118-NDimensionalDeterministicFractalSets.01.Ang
145 reference(s)
119-CompressionDeCompression_ComplexiteStructurelle.CDCM4_CDC_F.01
145 reference(s)
120-xDarchivesG__SMC__sources__SMC_____SI_G2
144 reference(s)
121-Galerie_ArtisticCreation.DIAPO.0085
144 reference(s)
122-MonodimensionalCellularAutomata.01.Fra
143 reference(s)
123-Informations_GoodNewsAndBadNews.01.Fra
142 reference(s)
124-Commentaires_EnsembleJuliaQuaternion.01
140 reference(s)
125-NombresEtLumiere.01.vv.Fra
139 reference(s)
126-Fractal.03
139 reference(s)
127-xDarchivesG__SMC__sources__utilitaires_____SI_ASSYS
138 reference(s)
128-GoldenTriangle.01.Ang
138 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2018-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2018-2024.