Tridimensional display of the Riemann Zeta function inside [-10.0,+20.0]x[-15.0,+15.0] (bird's-eye view) [Visualisation tridimensionnelle de la fonction Zêta de Riemann dans [-10.0,+20.0]x[-15.0,+15.0] (vue aérienne)].
The real Zeta function is defined as the serie:
n=+infinity
_______
\
\ -s
Zeta(s) = / n
/______
n=1
\-/ s > 1
The complex Riemann Zeta function is defined as the serie:
n=+infinity
_______
\
\ -z
Zeta(z) = / n
/______
n=1
\-/ z : Re(z) > 1
or again (Leonhard Euler):
_________
| |
| | 1
Zeta(z) = | | ---------
| | -z
| | 1 - p
p E P
where 'P' denotes the set of the prime numbers 'p'.
It can be computed for all z with the following analytic continuation:
n=N-1
_______
\
\ -z
Zeta(z) = / n
/______
n=1
1-z -z
N N
+ ------ + -----
z-1 2
k=V p=2k-2
_______ ________
\ B | |
\ 2k -z-(2k)+1 | |
+ / [-------.N | | (z+p)]
/______ (2k)! | |
k=1 p=0
+ epsilon(z,N,V)
\-/ z : Re(z+2V+1) > 1
N ~ |z|
This picture displays the modulus of the Riemann Zeta function
as a surface in a tridimensional space (the two dimensions
of the complex plane plus the modulus). The so-called phase of the Riemann Zeta function (its argument) is displayed as
colors painting the surface; the [0, 2.pi] segment
is mapped on the
{Blue,Red,Magenta,Green,Cyan,Yellow,White}
set. On this surface the unique pole (z=1) as well as some
of the roots (even negative integer numbers and points on
the x=1/2 line -the famous Riemann's conjecture-) can be seen.
See some related pictures (possibly including this one):
Here are some more pictures about the Zeta function:
-
the absolute value of the Real part of Zeta(z),
-
the absolute value of the Imaginary part of Zeta(z),
-
the Modulus of Zeta(z),
-
the Phase of Zeta(z).
(CMAP28 WWW site: this page was created on 06/18/1999 and last updated on 09/15/2022 19:02:04 -CEST-)
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 1999-2022.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 1999-2022.