Monthly Best Of on 06/28/2023




6 distributed points on a sphere by means of the Fibonacci spiral

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 06/28/2023 and last updated on 10/03/2024 17:04:40 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



Hypercube
1-222 reference(s)
A Tribute to Benoît Mandelbrot (1924-2010): tridimensional zoom in on the Mandelbrot set with mapping of the arguments
2-206 reference(s)
A Ball described by means of an hypercube -iteration 4-
3-121 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
4-110 reference(s)
Jean-François COLONNA (on 11/17/1994)with its fractal mountains
5-109 reference(s)
Tridimensional display of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
6-99 reference(s)
A Tribute to Benoît Mandelbrot (1924-2010): tridimensional zoom in on the Mandelbrot set with mapping of the arguments
7-96 reference(s)
Untitled 0214
8-92 reference(s)
Untitled 0616
9-92 reference(s)
Untitled 0612
10-91 reference(s)
The random walk of photons escaping the Sun
11-90 reference(s)
A Tribute to Benoît Mandelbrot (1924-2010): tridimensional zoom in on the Mandelbrot set with mapping of the arguments
12-90 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one marsian year -Earth point of view and zoom on the four first planets-
13-89 reference(s)
Some elementary symbols used to built labyrinths -with a big black ghost structure at pi/4-
14-87 reference(s)
Untitled 0615
15-86 reference(s)
Untitled 0613
16-86 reference(s)
Empty
17-86 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
18-86 reference(s)
A blue Sponge-tree -a Tribute to Yves Klein-
19-85 reference(s)
Artistic view of the prime numbers
20-84 reference(s)
Untitled 0609
21-84 reference(s)
About the length of the von Koch curve
22-83 reference(s)
Botticelli anomaly on the Moon
23-82 reference(s)
Along the border of the Mandelbrot set
24-81 reference(s)
The Klein bottle described by means of a Bidimensional Hilbert-like Curve -iteration 6-
25-79 reference(s)
The first two iterations -red and magenta respectively- of the construction of the von Koch curve
26-78 reference(s)
A simple geometrical periodical structure
27-78 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one marsian year -Sun point of view and zoom on the four first planets: {Mercury,Venus,the Earth,Mars}-
28-78 reference(s)
The length of the first two iterations of the construction of the von Koch curve
29-77 reference(s)
The construction process of the von Koch curve -iteration 2: the removing of the bases of the four equilateral triangles-
30-77 reference(s)
At each iteration of the construction process of the von Koch curve, its length is multiplied by 4/3
31-75 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year as it is -without non linear scaling-
32-75 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5-
33-75 reference(s)
A Bidimensional Hilbert-like Curve defined with {X1(...),Y1(...)} related to the von Koch Curve -iteration 2-
34-74 reference(s)
A Bidimensional Hilbert-like Curve defined with {X1(...),Y1(...)} related to the Mandelbrot set border -iteration 5-
35-74 reference(s)
The non linear transformation of the coordinates in the Solar System
36-74 reference(s)
Tridimensional display of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
37-73 reference(s)
The Klein bottle described by means of a Bidimensional Hilbert-like Curve -iteration 7-
38-73 reference(s)
The Piet Mondrian quadridimensional Calabi-Yau manifold -2D, 3D or 4D?-
39-73 reference(s)
Untitled 0611
40-73 reference(s)
Untitled 0610
41-72 reference(s)
A Tridimensional Hilbert-like Curve defined with {X2(...),Y2(...),Z2(...)} -iteration 2-
42-71 reference(s)
The 'R' elementary symbol used to built labyrinths
43-71 reference(s)
Untitled 0207
44-70 reference(s)
The construction process of the von Koch curve
45-68 reference(s)
Untitled 0127
46-68 reference(s)
The Klein bottle described by means of a Bidimensional Hilbert-like Curve -iteration 5-
47-68 reference(s)
A cylinder -a bidimensional manifold-
48-68 reference(s)
A cylinder -a bidimensional manifold-
49-67 reference(s)
Expansion of a gas inside a bidimensional circular box with display of velocity histograms
50-66 reference(s)
The Piet Mondrian Hypercube -2D, 3D or 4D?-
51-66 reference(s)
Untitled 0243
52-65 reference(s)
The generalized Ulam spiral
53-65 reference(s)
Artistic view of the Solar System viewed from a virtual planet
54-65 reference(s)
A parallelepipedic Torus described by means of an 'open' 3-foil torus knot -iteration 4-
55-65 reference(s)
A simple geometrical periodical structure
56-64 reference(s)
Untitled 0040
57-64 reference(s)
A 'fractal plane' with overhangings described by means of a Bidimensional Hilbert Curve -iteration 7-
58-64 reference(s)
The chess game complexity
59-64 reference(s)
Artistic view of a quadridimensional Calabi-Yau manifold
60-64 reference(s)
Artistic view of a quadridimensional Calabi-Yau manifold
61-64 reference(s)
The first two iterations of the construction of the von Koch curve
62-63 reference(s)
A simple geometrical periodical structure
63-63 reference(s)
A slide rule
64-63 reference(s)
From Pluto to the Sun (non linear scales)
65-63 reference(s)
Tridimensional display of 36 eigenstates of the Hydrogen atom (bidimensional computation)
66-63 reference(s)
Artistic view of a quadridimensional Calabi-Yau manifold
67-63 reference(s)
The construction process of the von Koch curve -iteration 1: an equilateral triangle-
68-62 reference(s)
About the length of the von Koch curve
69-62 reference(s)
Untitled 0085
70-62 reference(s)
Bidimensional zoom in on the Mandelbrot set
71-62 reference(s)
The 'K' elementary symbol used to built labyrinths
72-62 reference(s)
Artistic view of the Solar System viewed from a virtual planet -a Tribute to Isaac Newton-
73-61 reference(s)
Mathematics: an infinite pyramidal structure built on a few axioms
74-61 reference(s)
Close-up on a foggy 'MandelBox' -tridimensional cross-section-
75-61 reference(s)
A Tridimensional Hilbert-like Curve defined with {X3(...),Y3(...),Z3(...)} -iteration 3-
76-60 reference(s)
A 1972 Télémécanique T1600 computer with a 32 KB central memory and two 512 KB disk drives
77-59 reference(s)
Untitled 0320
78-59 reference(s)
Time step superposition during the expansion of a gas inside a bidimensional circular box with display of velocity histograms
79-59 reference(s)
The Solar System with a green virtual planet -virtual planet point of view-
80-59 reference(s)
The Solar System with a green virtual planet -virtual planet point of view-
81-59 reference(s)
Untitled 0279
82-59 reference(s)
A 'fractal plane' with overhangings described by means of a Bidimensional Hilbert-like Curve -iteration 6-
83-59 reference(s)
Artistic view of a quadridimensional Calabi-Yau manifold
84-59 reference(s)
The construction process of the von Koch curve -iteration 2: four equilateral triangles-
85-58 reference(s)
Universe or Multiverse -The fractal Universe-?
86-58 reference(s)
A simple geometrical periodical structure
87-58 reference(s)
The Solar System with a dark blue virtual planet -virtual planet point of view-
88-58 reference(s)
Happy new year 2000
89-58 reference(s)
Exhibition at 'la Mairie du cinquième arrondissement de Paris' -01/29/2020-06/02/2020-
90-58 reference(s)
Untitled 0608
91-58 reference(s)
A set of 4x3 stereograms of the Solar System with a green virtual planet -virtual planet point of view-
92-57 reference(s)
The Solar System with a dark blue virtual planet -virtual planet point of view-
93-57 reference(s)
An amazing cross-section inside the Menger Sponge -iteration 5-
94-57 reference(s)
Tridimensional zoom in on the Mandelbrot set
95-57 reference(s)
The Klein bottle described by means of a Bidimensional Hilbert-like Curve -iteration 5-
96-57 reference(s)
A 'crumpled' sphere described by means of a Bidimensional Hilbert Curve -iteration 7-
97-57 reference(s)
Untitled 0196
98-57 reference(s)
Tridimensional zoom in on the Mandelbrot set
99-56 reference(s)
The 'E' elementary symbol used to built labyrinths
100-56 reference(s)
The Klein bottle described by means of a Bidimensional Hilbert Curve -iteration 7-
101-56 reference(s)
Tridimensional localization of a point P its distances to the four vertices of a tetrahedron ABCD being known
102-56 reference(s)
16 complex Julia sets along the border of the Mandelbrot set with display of the iteration numbers
103-55 reference(s)
The Solar System with a dark blue virtual planet -heliocentric point of view-
104-55 reference(s)
Tridimensional representation of quadridimensional Calabi-Yau manifolds -Calabi-Yau manifolds attached to every point of a fractal tridimensional space-
105-55 reference(s)
Untitled 0089
106-54 reference(s)
Untitled 0105
107-54 reference(s)
The Solar System with a green virtual planet -heliocentric point of view-
108-54 reference(s)
The Menger Sponge -iteration 5-
109-54 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold described by means of 5x5 Bidimensional Hilbert Curves -iteration 5-
110-54 reference(s)
The Bonan-Jeener-Klein triple bottle
111-54 reference(s)
The construction process of the von Koch curve -the starting point: a segment-
112-53 reference(s)
The construction process of the von Koch curve -iteration 1: the removing of the base of the equilateral triangle-
113-53 reference(s)
The Sierpinski Carpet -iteration 1 to 5-
114-53 reference(s)
The 'S' elementary symbol used to built labyrinths
115-53 reference(s)
Bidimensional Hilbert Curve -iteration 4-
116-53 reference(s)
Tridimensional representation of an hexadecadimensional Calabi-Yau manifold with pseudo-random projection
117-53 reference(s)
Autostereogram with an hidden ring and ghost bows
118-52 reference(s)
Untitled 0090
119-52 reference(s)
The random walk of photons escaping the Sun
120-52 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
121-52 reference(s)
A foggy pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-
122-52 reference(s)
A set 'F' with two elements 'SE1' and 'SE2'
123-52 reference(s)
The construction process of the von Koch curve -iteration 1: the removing of the base of the equilateral triangle-
124-51 reference(s)
A Tridimensional Hilbert-like Curve defined with {X1(...),Y1(...),Z1(...)} -iteration 1-
125-51 reference(s)
Paradoxal Monument Valley at sunset, 'World of Tiers' -a Tribute to Philip José Farmer-
126-51 reference(s)
A Jeener-Möbius Tridimensional manifold described by means of an 'open' 3-foil torus knot -iteration 4-
127-51 reference(s)
Exhibition at 'la Mairie du cinquième arrondissement de Paris' -01/29/2020-06/02/2020-
128-51 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-ChatGPT.01.Fra
545 reference(s)
2-AVirtualSpaceTimeTravelMachine.Ang
318 reference(s)
3-An2000.01.Fra
313 reference(s)
4-LesCourbesRemplissantes.02.Fra
234 reference(s)
5-Vcatalogue.11
232 reference(s)
6-help.
222 reference(s)
7-copyright.01.
209 reference(s)
8-mail.01.vv
186 reference(s)
9-demo_14
173 reference(s)
10-Informations_AboutPicturesAnimationsAndFiles.01.Ang
171 reference(s)
11-Galerie_ImagesDesMathematiques.FV
140 reference(s)
12-Galerie_ArtisticCreation.FV
138 reference(s)
13-Fractal.11
127 reference(s)
14-EntrelacsIntertwinings.01.Fra
120 reference(s)
15-Galerie_NumberTheory.FV
118 reference(s)
16-Fractal.01
117 reference(s)
17-Galerie_GeneralitiesVisualization.FV
116 reference(s)
18-Galerie_DeterministicFractalGeometry.FV
112 reference(s)
19-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
106 reference(s)
20-DecimalesDePi.01.Fra
103 reference(s)
21-Informations_GoodNewsAndBadNews.01.Fra
102 reference(s)
22-an2000.01.fra
101 reference(s)
23-DecimalesPi_1_100.vv
100 reference(s)
24-Stereogrammes_AutoStereogrammes.01
99 reference(s)
25-Galerie_NewPictures.FV
99 reference(s)
26-DieuScience.01.Fra
99 reference(s)
27-Galerie_TextureSynthesis.FV
97 reference(s)
28-Labyrinthes.01.Fra
95 reference(s)
29-Web_Mail.01.vv
94 reference(s)
30-ImagesDuVirtuel.01.Fra.FV
94 reference(s)
31-GenieLogiciel.01.Fra
93 reference(s)
32-Galerie_ParticleSystems.FV
92 reference(s)
33-Fractal.21
92 reference(s)
34-RealNumbers.01.Fra
91 reference(s)
35-Commentaires_HyperCubeDimensionN.01
91 reference(s)
36-MouvementsRelatifs_et_ObservationsAstronomiques.01.Fra
90 reference(s)
37-MathematiquesPhysiqueFractales.22
90 reference(s)
38-FloatingPointNumbers.01.Fra
89 reference(s)
39-AVirtualSpaceTimeTravelMachine.Fra
88 reference(s)
40-Galerie_SignalProcessing.FV
87 reference(s)
41-Galerie_ArtAndScience.FV
87 reference(s)
42-Galerie_Tributes.FV
86 reference(s)
43-Galerie_CelestialMechanics.FV
86 reference(s)
44-Exposition_EcolePolytechnique_FeteDeLaScience_201910
86 reference(s)
45-Polynomials_RationalNumbers.01.Fra
85 reference(s)
46-present.01.
83 reference(s)
47-Galerie_QuantumMechanics.FV
83 reference(s)
48-Exposition_EcolePolytechnique_FeteDeLaScience_201810
81 reference(s)
49-Galerie_Astrophysics.FV
80 reference(s)
50-Fractal.03
80 reference(s)
51-DecimalesPi_100000.vv
80 reference(s)
52-ExpV_VirE.11
79 reference(s)
53-MathematiquesPhysiqueFractales.02
78 reference(s)
54-Informations_AboutPicturesAnimationsAndFiles.01.Fra
78 reference(s)
55-FaireDesMathematiques.01.Fra
78 reference(s)
56-Galerie_FromTheInfinitelySmallToTheInfinitelyBig.FV
77 reference(s)
57-OrdinateurMathematiquesArt.01.Fra
76 reference(s)
58-MathematiquesPhysiqueFractales.12
76 reference(s)
59-Galerie_ImagesDidactiques.FV
76 reference(s)
60-Exposition_EcolePolytechnique_AnneeMondialeDeLaPhysique_2005
76 reference(s)
61-VisualisationRelief.01.vv.Fra
74 reference(s)
62-NatureDesMathematiques.01.vv.Fra
73 reference(s)
63-ImagesDuVirtuel.01.Fra
73 reference(s)
64-Commentaires_SystemeSolaire.01
73 reference(s)
65-Commentaires_DefinitionPseudoOctonions.01
73 reference(s)
66-PerteDeLAssociativite.01
70 reference(s)
67-MathematiquesPhysiqueFractales.02.1
70 reference(s)
68-LeParadoxeDeFermi.01.Fra
70 reference(s)
69-Commentaires_EnsembleJuliaComplexe.01
70 reference(s)
70-xiirv_____.nota.t.
69 reference(s)
71-Multivers.01.Fra
69 reference(s)
72-Exposition_OperaDeMassy_201912_202001
69 reference(s)
73-ExpV_VirE.Fra
69 reference(s)
74-Commentaires_DefinitionQuaternions.01
69 reference(s)
75-T_MathematiquesPhysiqueFractales.02.15_ProcedeDiagonalCantor.01.vv.Fra.0001
67 reference(s)
76-Notations_AppartientA.01
67 reference(s)
77-MathematiquesPhysiqueFractales.02.15
67 reference(s)
78-MathematiquesPhysiqueFractales.02.13
67 reference(s)
79-GoldenTriangle.01.Fra
67 reference(s)
80-Exposition_EcolePolytechnique_FeteDeLaScience_201510
67 reference(s)
81-MathematiquesPhysiqueFractales.02.28
66 reference(s)
82-MathematiquesPhysiqueFractales.02.12
66 reference(s)
83-LesCourbesRemplissantes.02.Ang
65 reference(s)
84-Exposition_MairieCinquiemeArrondissementParis_202001_202002
65 reference(s)
85-Commentaires_DefinitionComplexes.01
65 reference(s)
86-LeNoeudInfini.01.Fra
64 reference(s)
87-LOG_xiMc.11
64 reference(s)
88-AQuoiServentLesMathematiques.01
64 reference(s)
89-UlamSpiral.01.Fra
63 reference(s)
90-MathematiquesPhysiqueFractales.02.3
63 reference(s)
91-De_L_EnseignementAssisteParOrdinateur_a_L_ExperimentationVirtuelle.01.Fra
63 reference(s)
92-xiirs_____.nota.t.
61 reference(s)
93-RasoirDOccamEtMathematiques.01.vv.Fra
61 reference(s)
94-MathematiquesPhysiqueFractales.02.27
61 reference(s)
95-xtc_____INCLUDES.01.I.
60 reference(s)
96-T_Cryptographie_Alphabet.01.vv.Fra.0001
60 reference(s)
97-PerteDeLaDistributivite.01.DIS2
60 reference(s)
98-MathematiquesPhysiqueFractales.02.24
60 reference(s)
99-MathematiquesPhysiqueFractales.02.11
60 reference(s)
100-T_MathematiquesPhysiqueFractales.02.28_Indecidabilite_CodagePropositions.01.vv.Fra.0002
59 reference(s)
101-T_MathematiquesPhysiqueFractales.02.15_NumerotationDesRationnels.01.vv.Fra.0002
59 reference(s)
102-Notations_QuelQueSoit.01
59 reference(s)
103-MathematiquesPhysiqueFractales.02.23
58 reference(s)
104-MathematiquesPhysiqueFractales.02.14
58 reference(s)
105-HommageBenoitMandelbrot.21
58 reference(s)
106-Commentaires_VarieteQuadriDimensionnelleCalabiYau.01
58 reference(s)
107-T_MathematiquesPhysiqueFractales.02.1_ProcedeDiagonalCantor.01.vv.Fra.0001
57 reference(s)
108-T_MathematiquesPhysiqueFractales.02.15_NumerotationDesRationnels.01.vv.Fra.0003
57 reference(s)
109-T_DuReelAuVirtuel_MetaOrdinateur.02.Fra.0001
57 reference(s)
110-PerteDeLAssociativite.01.VerhulstDefinition
57 reference(s)
111-MathematiquesPhysiqueFractales.02.21
57 reference(s)
112-GenieLogiciel_VisualisationScientifique.01.vv
57 reference(s)
113-T_MathematiquesPhysiqueFractales.02_NumerotationDesRationnels.01.vv.Fra.0002
56 reference(s)
114-T_MathematiquesPhysiqueFractales.02.28_Indecidabilite_CodagePropositions.01.vv.Fra.0003
56 reference(s)
115-T_MathematiquesPhysiqueFractales.02.15_ArbreDeSternBrocot.01.vv.Fra.0001
56 reference(s)
116-PerteDeLAssociativite.01.MUL3
56 reference(s)
117-MathematiquesPhysiqueFractales.02.26
56 reference(s)
118-GoldenTriangle.01.Ang
56 reference(s)
119-Commentaires_ProblemeDesNCorps.01
56 reference(s)
120-AProposSite.01.Fra
56 reference(s)
121-T_PerteDeLAssociativite.01_ProblemesNombresFlottants.03.0001
55 reference(s)
122-T_MathematiquesPhysiqueFractales.02.28_ProblemesNombresFlottants.03.0001
55 reference(s)
123-T_MathematiquesPhysiqueFractales.02.1_NumerotationDesRationnels.01.vv.Fra.0002
55 reference(s)
124-PerteDeLAssociativite.01.ADD3
55 reference(s)
125-LesCourbesRemplissantes.01.Fra
55 reference(s)
126-Commentaires_HyperSphere.01
55 reference(s)
127-xtc_____HexagonesPremiers.01.vv.c.
54 reference(s)
128-SurfaceProjector.01.Ang
54 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2023-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2024.