Monthly Best Of on 07/17/2000




Artistic view of a bidimensional texture obtained by means of the self-transformation of a fractal process

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France
france telecom, France Telecom R&D

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 07/17/2000 and last updated on 10/03/2024 17:00:52 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



Welcome aboard A VIRTUAL SPACE-TIME TRAVEL MACHINE
1-801 reference(s)
Artistic view of the prime numbers
2-442 reference(s)
Jean-François COLONNA
3-408 reference(s)
Quark and gluon structure of a nucleon
4-361 reference(s)
Quark and gluon dynamics of the nucleon
5-358 reference(s)
Artistic view of the Big Bang
6-311 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
7-280 reference(s)
2.pi rotation about Y and Z axes of a quaternionic Julia set -tridimensional cross-sections-
8-251 reference(s)
Bidimensional zoom in on the Z=Gamma(Z)iteration with display of the arguments
9-242 reference(s)
The 16 most referenced pictures on 01/30/1996
10-227 reference(s)
From the infinitely small to the infinitely big
11-220 reference(s)
From Pluto to the Sun
12-214 reference(s)
N-body problem integration (N=2)displaying a perfect Keplerian orbit
13-203 reference(s)
A bidimensional periodical fluid with strictly identical initial velocities and with a vertically shifted central obstacle and with display of velocity histograms
14-200 reference(s)
Cauliflowers, seaweeds, shells,... with fog
15-194 reference(s)
A tridimensional periodical fluid with display of velocity histograms
16-192 reference(s)
The numerical irreversibility of the bidimensional billiard
17-191 reference(s)
Tridimensional visualization of a bidimensional turbulent flow
18-180 reference(s)
Texture animation by means of the generalized Fourier filtering process
19-175 reference(s)
The Mandelbrot set computed for 1 to 16 iterations with display of the arguments
20-170 reference(s)
Rotation about the Y (vertical)axis of the Lorenz attractor that can also be viewed as a set of 4x3 stereograms
21-169 reference(s)
A twisting rope
22-168 reference(s)
The Birth of the Universe
23-167 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
24-165 reference(s)
The Lorenz attractor
25-161 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
26-157 reference(s)
The Lorenz attractor -sensitivity to initial conditions (displayed as the central point of each frame)-
27-156 reference(s)
Tridimensional display of 36 eigenstates of the Hydrogen atom (bidimensional computation)
28-155 reference(s)
Zoom in on the von Koch curve
29-153 reference(s)
Computation of the Lorenz attractor on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
30-153 reference(s)
Real numbers do not exist for a computer
31-149 reference(s)
Texture animation by means of Fourier interpolation
32-147 reference(s)
A Lissajous surface
33-146 reference(s)
16 earth-like planets initially on the same keplerian trajectory
34-146 reference(s)
Electron-positron scattering
35-146 reference(s)
From low to high galaxy density in the local universe (the depth is displayed by means of the luminance)
36-145 reference(s)
Mountains at sunrise
37-145 reference(s)
display of the inclination of two elliptic trajectories
38-145 reference(s)
N-body problem integration (N=3)with one yellow star and two planets (the red one being very heavy and the blue one being light)
39-145 reference(s)
Three pendulums -the Red one, the Green one and the Blue one- and three magnets -white-
40-145 reference(s)
Carnival in motion
41-141 reference(s)
The iterative process used to generate bidimensional fractal fields (16 iterations)
42-139 reference(s)
The three pendulums and three magnets problem computed on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
43-138 reference(s)
N-body problem integration (N=10)displaying the actual Solar System with its simultaneous 2.pi rotation
44-136 reference(s)
Tridimensional zoom in on the Mandelbrot set
45-136 reference(s)
Beyond the Gate
46-134 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)-sensitivity to initial conditions-
47-134 reference(s)
Zoom in on the quaternionic Mandelbrot set -tridimensional cross-sections-
48-134 reference(s)
Electron diffraction
49-134 reference(s)
Peace
50-132 reference(s)
N-body problem integration (N=4)with one yellow star and two planets (the red one being very heavy and the blue one and its white satellite being light)
51-131 reference(s)
The first true colors autostereogram movie about quaternionic Julia sets -tridimensional cross-sections-
52-130 reference(s)
Artistic view of a 2.pi rotation about the Y axis of a quaternionic Julia set -tridimensional cross-sections-
53-130 reference(s)
Translation along the fourth axis of a quaternionic Julia set -tridimensional cross-sections-
54-128 reference(s)
Along the border of the Mandelbrot set
55-127 reference(s)
16 complex Julia sets along the border of the Mandelbrot set with display of the iteration numbers
56-125 reference(s)
A variable Archimedes spiral displaying 1000 numbers
57-125 reference(s)
Bidimensional visualization of a bidimensional turbulent flow -sensitivity to initial conditions-
58-125 reference(s)
16 complex Julia sets
59-124 reference(s)
2.pi rotation about the Y axis of a quaternionic Julia set -tridimensional cross-sections-
60-124 reference(s)
Electron-neutrino scattering
61-124 reference(s)
Texture animation by means of Fourier interpolation
62-123 reference(s)
The first autostereogram movie about quaternionic Julia sets -tridimensional cross-sections-
63-121 reference(s)
Isotropic random walk of 64 particles on a bidimensional square lattice
64-121 reference(s)
The erection of the Babel Tower
65-121 reference(s)
Isotropic random walk of 64 particles on a tridimensional square lattice
66-120 reference(s)
2 identical grey squares moving over a grey scale
67-119 reference(s)
Tridimensional display of 36 eigenstates of the Hydrogen atom (tridimensional computation)
68-119 reference(s)
A higly symmetrical system (a bidimensional periodical fluid with strictly identical initial velocities and with a vertically shifted central obstacle)can lost very fast the memory of its initial symmetry -with display of velocity histograms-
69-118 reference(s)
Diffusion between two boxes (initial conditions: the left one is empty, the right one contains 256 particles), with collisions and a time-dependent geometry
70-118 reference(s)
Light cloud dynamics -this sequence being periodical-
71-118 reference(s)
Texture animation by means of Fourier filtering of a random walk process
72-117 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
73-116 reference(s)
N-body problem integration (N=10)displaying the actual Solar System with its simultaneous 2.pi rotation, our Earth being at the origin of the coordinates
74-116 reference(s)
Animation of a quaternionic Julia island
75-116 reference(s)
Zoom in on a quaternionic Julia set -tridimensional cross-sections-
76-116 reference(s)
Fractal diffusion front in a bidimensional medium obtained by means of identical interacting particles
77-114 reference(s)
Extended life game
78-114 reference(s)
Liquid Jean-Francois COLONNA
79-114 reference(s)
From Mars to the Sun
80-112 reference(s)
Rotation about the X axis of the Lorenz attractor
81-112 reference(s)
Rotation about the X axis of the Lorenz attractor (1000 iterations), computed simultaneously on two different computers
82-112 reference(s)
Quaternionic Julia sets along the border of the Mandelbrot set with motion blur -tridimensional cross-sections-
83-111 reference(s)
Bidimensional zoom in on the Mandelbrot set with display of the arguments
84-111 reference(s)
Alien
85-110 reference(s)
Picture interpolation by means of the Generalized Product
86-110 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -the Sun point of view-
87-110 reference(s)
More and more craters on the Moon
88-109 reference(s)
Bidimensional visualization of the Verhulst dynamics -(grey,orange,red)display negative Lyapunov exponents, (yellow,green,blue) display positive Lyapunov exponents-
89-109 reference(s)
Brownian motion of a few heavy slow particles inside a gaz of fast light particles
90-108 reference(s)
Bidimensional zoom in on the Verhulst dynamics
91-108 reference(s)
Pan on a quaternionic Julia set -tridimensional cross-sections-
92-108 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
93-107 reference(s)
Synthesis of bidimensional geometrical textures
94-107 reference(s)
Zoom in on mountains (with 3D clipping, bird's-eye view)
95-106 reference(s)
From a sphere to the Boy surface
96-106 reference(s)
16 complex Julia sets along the border of the Mandelbrot set with display of the arguments
97-105 reference(s)
Non isotropic random walk of 64 particles on a bidimensional square lattice in a 'ring' potential
98-105 reference(s)
From Pluto to the Sun
99-105 reference(s)
Rotation about the X axis of the Lorenz attractor (5000 iterations), computed simultaneously on two different computers
100-105 reference(s)
Animation of a sunrise on mountains
101-104 reference(s)
Earthquake
102-104 reference(s)
Color display of a tridimensional function
103-104 reference(s)
An arbitrary surface (Jeener surface 2)in motion
104-104 reference(s)
Zoom in on a quaternionic Julia set -tridimensional cross-sections-
105-104 reference(s)
Zoom in on light clouds
106-104 reference(s)
The normal field of a shell (Jeener surface 1)
107-104 reference(s)
Particles in a bidimensional box submitted to a vertical field of gravity
108-103 reference(s)
The velocity vectors -with a common origin- of the 9 planets of the Solar System during one plutonian year
109-103 reference(s)
The journey of an Earth-like planet (dark blue)from Pluto (grey) to the Sun (yellow)
110-103 reference(s)
Zoom in on self-similar light clouds
111-103 reference(s)
Artistic view of Ph(Zeta)
112-102 reference(s)
Triple impossible staircase
113-102 reference(s)
A leaking bidimensional piston with following initial conditions: high temperature particles at left and low temperature particles at right
114-101 reference(s)
The erosion of the Babel Tower
115-101 reference(s)
Black and white display of a tridimensional function
116-101 reference(s)
Bidimensional fractal aggregates obtained by means of pasting during collisions with display of the velocity histogram
117-100 reference(s)
The journey of an Earth-like planet (blue)from Mars (red) to the Sun (yellow)
118-100 reference(s)
N-body problem integration (N=9)with a simultaneous 2.pi rotation of the observer
119-100 reference(s)
Zoom in on the von Koch curve
120-99 reference(s)
Earthquake (bird's-eye view)
121-99 reference(s)
Light cloud dynamics -this sequence being periodical-
122-99 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -the green eleventh body being the gravity center of the 9 planets-
123-99 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -Pluto point of view-
124-99 reference(s)
The journey of an Earth-like planet (dark blue)between Saturn and Uranus
125-99 reference(s)
A bidimensional periodical fluid with a central obstacle and with display of velocity histograms
126-98 reference(s)
Dynamics of an erosion process (bird's-eye view)
127-98 reference(s)
From Pluto to the Sun -extrapolation 1- (non linear scales)
128-98 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-demo_14
8134 reference(s)
2-display
4331 reference(s)
3-An2000.01.Fra
1527 reference(s)
4-demo_14.FV
467 reference(s)
5-AProposSite.01.Fra
343 reference(s)
6-present.01.
316 reference(s)
7-copyright.01.
282 reference(s)
8-ImagesDuVirtuel.01.Fra
277 reference(s)
9-GenieLogiciel.01.Fra
266 reference(s)
10-help.
260 reference(s)
11-Galerie_ArtAndScience.FV
260 reference(s)
12-ExpV_VirE.Fra
259 reference(s)
13-An2000.02.Fra
217 reference(s)
14-ImagesDuVirtuel.01.Fra.FV
189 reference(s)
15-An2000.01.Ang
183 reference(s)
16-Galerie_ArtisticCreation.FV
170 reference(s)
17-Galerie_NewPictures.FV
167 reference(s)
18-Galerie_DeterministicChaos.FV
165 reference(s)
19-Galerie_BestOf.FV
157 reference(s)
20-Fractal.01
157 reference(s)
21-catalogue.11
154 reference(s)
22-Galerie_CelestialMechanics.FV
154 reference(s)
23-Galerie_Astrophysics.FV
153 reference(s)
24-BEST.20000517
153 reference(s)
25-mail.01.vv
152 reference(s)
26-Galerie_QuantumMechanics.FV
148 reference(s)
27-Galerie_DeterministicFractalGeometry.FV
142 reference(s)
28-Galerie_NumberTheory.FV
141 reference(s)
29-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
140 reference(s)
30-Galerie_FluidMechanics.FV
138 reference(s)
31-VisSci_SciVis.01
137 reference(s)
32-Vcatalogue.11
136 reference(s)
33-Galerie_FromTheInfinitelySmallToTheInfinitelyBig.FV
133 reference(s)
34-AnimFractal.01.
133 reference(s)
35-create.03.
130 reference(s)
36-ManyChaos.01.Fra
126 reference(s)
37-ExpV_VirE.Ang
126 reference(s)
38-Ariane501.01.Fra
124 reference(s)
39-An2000.06.Fra
124 reference(s)
40-MonumentValley.01.Ang
123 reference(s)
41-An2000.03.Fra
123 reference(s)
42-ImpossibleStructures.01.Ang
122 reference(s)
43-LOG_xiMc.11
121 reference(s)
44-An2000.04.Fra
121 reference(s)
45-ExpV_VirE.01.Fra
119 reference(s)
46-Galerie_TextureSynthesis.FV
118 reference(s)
47-MonumentValley.01.Fra
117 reference(s)
48-Galerie_GeneralitiesVisualization.FV
114 reference(s)
49-An2000.11.Fra
112 reference(s)
50-ManyChaos.01.Ang
111 reference(s)
51-RealNumbers.01.Fra
109 reference(s)
52-ExpV_VirE.01.Ang
105 reference(s)
53-An2000.05.Fra
105 reference(s)
54-Galerie_SignalProcessing.FV
103 reference(s)
55-Spheres.01
102 reference(s)
56-BEST.20000403
102 reference(s)
57-IllusionConnaissance.01
100 reference(s)
58-DuReelAuVirtuel.01.Fra
100 reference(s)
59-PremierMinistre.01.Fra
97 reference(s)
60-PresidentRepublique.01.Fra
95 reference(s)
61-ImpossibleStructures.01.Fra
94 reference(s)
62-JFC
93 reference(s)
63-LumiereVirtuelleParadoxale.01
92 reference(s)
64-Galerie_SensitivityToRoundingOffErrors.FV
92 reference(s)
65-Galerie_DeterministicChaos
92 reference(s)
66-ArtScience.01
91 reference(s)
67-BEST.20000323
90 reference(s)
68-ArtOrdinateur.01
90 reference(s)
69-PourLaScience.01.Fra
87 reference(s)
70-PresidentRepublique.02.Fra
86 reference(s)
71-MinistreEducationNationale.01.Fra
86 reference(s)
72-stereogra.01.c.
85 reference(s)
73-subject.01.
81 reference(s)
74-relativity.01.
81 reference(s)
75-infinity.03
79 reference(s)
76-Kepler.02.
77 reference(s)
77-InformatiqueProfessionnelle.01.Fra
77 reference(s)
78-demo_14..m4.
74 reference(s)
79-PatrimoineHumanite.02.Fra
72 reference(s)
80-real.02.
70 reference(s)
81-GenieLogiciel.01.Ang
70 reference(s)
82-Galerie_CelestialMechanics
70 reference(s)
83-AProposSite.01.Ang
68 reference(s)
84-infinity.01.vv
67 reference(s)
85-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0003
66 reference(s)
86-Galerie_SensitivityToRoundingOffErrors
66 reference(s)
87-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0006
62 reference(s)
88-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0001
62 reference(s)
89-T_DuReelAuVirtuel_recherche.01.Fra.0001
61 reference(s)
90-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0004
61 reference(s)
91-relai_universel.01.vA
60 reference(s)
92-relai.01.vv
60 reference(s)
93-T_DuReelAuVirtuel_recherche.01.Fra.0003
60 reference(s)
94-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0001
60 reference(s)
95-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0010
60 reference(s)
96-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0009
60 reference(s)
97-T_DuReelAuVirtuel_ExpReelle.01.Fra.0001
60 reference(s)
98-T_DuReelAuVirtuel_recherche.01.Fra.0008
59 reference(s)
99-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0006
59 reference(s)
100-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0003
59 reference(s)
101-T_DuReelAuVirtuel_recherche.01.Fra.0009
58 reference(s)
102-T_DuReelAuVirtuel_recherche.01.Fra.0004
58 reference(s)
103-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0005
58 reference(s)
104-T_DuReelAuVirtuel_recherche.01.Fra.0010
57 reference(s)
105-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0005
57 reference(s)
106-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0002
57 reference(s)
107-T_DuReelAuVirtuel_ExpReelle.01.Fra.0005
57 reference(s)
108-T_DuReelAuVirtuel_ExpReelle.01.Fra.0002
57 reference(s)
109-relai.01.vC
56 reference(s)
110-T_DuReelAuVirtuel_recherche.01.Fra.0011
56 reference(s)
111-T_DuReelAuVirtuel_recherche.01.Fra.0005
56 reference(s)
112-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0004
56 reference(s)
113-T_DuReelAuVirtuel_ExpReelle.01.Fra.0003
56 reference(s)
114-Galerie_GeneralitiesVisualization
56 reference(s)
115-Galerie_DeterministicFractalGeometry
56 reference(s)
116-T_DuReelAuVirtuel_recherche.01.Fra.0007
55 reference(s)
117-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0007
55 reference(s)
118-T_DuReelAuVirtuel_MetaOrdinateur.01.Fra.0002
55 reference(s)
119-T_DuReelAuVirtuel_ExpReelle.01.Fra.0004
55 reference(s)
120-RealNumbers.01.Ang
55 reference(s)
121-relai.01.vB
54 reference(s)
122-relai.01.vA
54 reference(s)
123-T_DuReelAuVirtuel_recherche.01.Fra.0006
54 reference(s)
124-T_DuReelAuVirtuel_recherche.01.Fra.0002
54 reference(s)
125-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0008
54 reference(s)
126-T_DuReelAuVirtuel_ExpVirtuelle.01.Fra.0007
54 reference(s)
127-T_DuReelAuVirtuel_ExpReelle.01.Fra.0000
54 reference(s)
128-demo_14.FV..m4.
53 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2000-2024.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2000-2024.