The self-similarity of the von Koch curve. | The self-similarity of the von Koch curve displayed by means of a zoom in with a ratio that is equal to 3. |
The first four iterations of the construction of the von Koch snowflake. |
The first two iterations of the construction of the Minkowski curve. |
The construction of the bidimensional Hilbert Curve -iteration 3-. | The construction of the bidimensional Hilbert Curve -iteration 4-. |
Tridimensional Hilbert Curve -iteration 1-. | Tridimensional Hilbert Curve -iteration 2-. | Tridimensional Hilbert Curve -iteration 3-. | Tridimensional Hilbert Curve -iteration 4-. |
Tridimensional Hilbert Curve -iteration 1-. | Tridimensional Hilbert Curve -iteration 2-. | Tridimensional Hilbert Curve -iteration 3-. | Tridimensional Hilbert Curve -iteration 4-. |
The construction of the tridimensional Hilbert Curve -iteration 3-. |
The construction of a tridimensional Hilbert-like Curve defined with {X3(...),Y3(...),Z3(...)} and based on an 'open' 3-foil torus knot -iteration 3-. |
A parallelepipedic Torus described by means of an 'open' 3-foil torus knot -iteration 4-. | A Jeener-Möbius Tridimensional manifold described by means of an 'open' 3-foil torus knot -iteration 4-. |
The Cantor Triadic Set -iterations 0 to 5-. |
The Sierpinski Carpet -iteration 1-. | The Sierpinski Carpet -iteration 2-. | The Sierpinski Carpet -iteration 3-. | The Sierpinski Carpet -iteration 4-. | The Sierpinski Carpet -iteration 5-. |
The Sierpinski Carpet -iteration 1 to 5-. |
A 4x4 Sierpinski Carpet -iteration 4- displaying the number 3.141. | A 5x5 Sierpinski Carpet -iteration 4- using the 9 first prime numbers and displaying the number 3.141. |
The Menger Sponge -iteration 1-. | The Menger Sponge -iteration 2-. | The Menger Sponge -iteration 3-. |
The Menger Sponge -iteration 1-. | The Menger Sponge -iteration 2-. | The Menger Sponge -iteration 3-. | The Menger Sponge -iteration 4-. | The Menger Sponge -iteration 5-. |
The Menger Sponge -iteration 1-. | The Menger Sponge -iteration 2-. | The Menger Sponge -iteration 3-. | The Menger Sponge -iteration 4-. | The Menger Sponge -iteration 5-. |
A random Menger Sponge -iteration 2-. | A random Menger Sponge -iteration 3-. | A random Menger Sponge -iteration 4-. | A random Menger Sponge -iteration 5-. |
An extended Menger Sponge -iteration 5- using the 246.078 first digits -base 2- of a self-portrait. |
An extended Menger Sponge -iteration 4- displaying the 134.460 digits -base 2- of the source of the Menger Sponge generator. |
Untitled 0595. | Untitled 0596. |
A 3x3x3 Menger Sponge -iteration 6- displaying the number 3.14159. | A 3x3x3 Menger Sponge -iteration 6- displaying the number 3.14159. |
A double spherical cross-section inside a 3x3x3 Menger Sponge -iteration 4- displaying the number 3.141. |
A 3x3x3 Menger Sponge -iteration 6- displaying the number 6.85840 (=9.99999-3.14159). | A 3x3x3 Menger Sponge -iteration 6- displaying the number 6.85840 (=9.99999-3.14159). |
A 3x3x3 Menger Sponge -iteration 6- displaying the number 7.77777. | A 3x3x3 Menger Sponge -iteration 6- displaying the number 8.88888. | A 3x3x3 Menger Sponge -iteration 6- displaying the number 9.99999. |
Distorsion of the Menger Sponge -iteration 2-. | Distorsion of the Menger Sponge -iteration 3-. |
A tridimensional billiard starting with a Menger Sponge -iteration 2-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 2-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iteration 4-. | A Fractal Square -iteration 5-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | Tridimensional display of a Fractal Square -iteration 1 to 3-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | Tridimensional display of a Fractal Square -iteration 1 to 3-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | Tridimensional display of a Fractal Square -iteration 1 to 3-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | Tridimensional display of a Fractal Square -iteration 1 to 3-. |
A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | Tridimensional display of a Fractal Square -iteration 1 to 3-. |
Untitled 0622. |
A Fractal Square -iteration 0-. | A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iteration 0-. | A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iteration 0-. | A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iteration 0-. | A Fractal Square -iteration 1-. | A Fractal Square -iteration 2-. | A Fractal Square -iteration 3-. | A Fractal Square -iterations 0 to 3-. |
A Fractal Square -iterations 0 to 3-. |
A Fractal Cube: the Menger Sponge -iteration 0-. | A Fractal Cube: the Menger Sponge -iteration 1-. | A Fractal Cube: the Menger Sponge -iteration 2-. | A Fractal Cube: the Menger Sponge -iteration 3-. |
A Fractal Cube -iteration 0-. | A Fractal Cube -iteration 1-. | A Fractal Cube -iteration 2-. | A Fractal Cube -iteration 3-. |
A Fractal Cube -iteration 0-. | A Fractal Cube -iteration 1-. | A Fractal Cube -iteration 2-. | A Fractal Cube -iteration 3-. |
A Fractal Cube -iteration 0-. | A Fractal Cube -iteration 1-. | Merry Christmas 2023: A Fractal Cube -iteration 2-. | A Fractal Cube -iteration 3-. |
A Fractal Cube -iteration 0-. | A Fractal Cube -iteration 1-. | A Fractal Cube -iteration 2-. |
The Mandelbrot set. |
Iterations in the complex plane: the computation of the Mandelbrot set. |
The connexity of the Mandelbrot set. | The connexity of the Mandelbrot set. |
The Mandelbrot set computed for 1 to 4 iterations. | The Mandelbrot set computed for 1 to 16 iterations. |
Bidimensional zoom in on the Mandelbrot set. | Bidimensional zoom in on the Mandelbrot set. |
Tridimensional zoom in on the Mandelbrot set. | Tridimensional zoom in on the Mandelbrot set. | Tridimensional zoom in on the Mandelbrot set. |
The Mandelbrot set computed for 1 to 4 iterations with display of the arguments. | The Mandelbrot set computed for 1 to 16 iterations with display of the arguments. |
Bidimensional zoom in on the Mandelbrot set with display of the arguments. | Bidimensional zoom in on the Mandelbrot set with display of the arguments. |
Tridimensional visualization of the Mandelbrot set with mapping of the arguments -the Mont Saint Michel-. |
The fiftieth anniversary of CNRS (bird's-eye view). | The fiftieth anniversary of CNRS. |
The eightieth anniversary of CNRS (bird's-eye view). | The eightieth anniversary of CNRS. |
A Douady rabbit -a complex Julia set computed with A=(-0.13,+0.77)- with display of the arguments. |
Iterations in the complex plane: the computation of a Julia set. |
16 complex Julia sets. |
Along the border of the Mandelbrot set. | Along the border of the Mandelbrot set. |
16 complex Julia sets along the border of the Mandelbrot set with display of the iteration numbers. | 16 complex Julia sets along the border of the Mandelbrot set with display of the arguments. |
The first autostereogram movie about quaternionic Julia sets -tridimensional cross-sections-. | The first true colors autostereogram movie about quaternionic Julia sets -tridimensional cross-sections-. |
A pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -'the children round' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-. |
Beautiful self-similarity. |
Bidimensional display of the rounding-off errors when computing the Verhulst dynamics. | Tridimensional display of the rounding-off errors when computing the Verhulst dynamics. |
Tridimensional visualizations of the Verhulst dynamics. |
Tridimensional visualization of the Verhulst dynamics -'Time Ships', a Tribute to Stephen Baxter-. | Tridimensional visualization of the Verhulst dynamics -'Time Ships', a Tribute to Stephen Baxter-. |
Tridimensional visualization of the Verhulst dynamics -'Time Ships', a Tribute to Stephen Baxter-. |
A pseudo-octonionic Mandelbrot set -tridimensional cross-section-. |
Pseudo-octonionic Julia sets along the border of the Mandelbrot set -tridimensional cross-sections-. |
Bidimensional Hilbert Curve -iteration 4-. | Tridimensional Hilbert Curve -iteration 3-. | Tridimensional Hilbert Curve -iteration 4-. |
Various bidimensional fractal crosses. |
Tridimensional fractal cross -iteration 5-. | Tridimensional fractal cross -iteration 5-. |
A perfect bidimensional fractal tree and the self-similarity. | The self-similarity of a perfect bidimensional fractal tree. |
A binary tree. | A binary tree with 256 leaves. | Artistic view of a binary tree with 256 leaves. | A binary tree with 256 leaves. | A binary tree with 256 leaves. |
A binary tree with 4096 leaves. |
The three first bifurcation levels (over fifteen) of the human lung tree. | The seven first bifurcation levels (over fifteen) of the human lung tree. |
A vibrating ternary tree. | A vibrating ternary tree. |
The golden binary tree. | The golden binary tree. |
A foggy 'MandelBox' -tridimensional cross-section-. | Close-up on a foggy 'MandelBox' -tridimensional cross-section-. | An extended foggy 'MandelBox' -tridimensional cross-section-. |
A tridimensional fractal structure. | A tridimensional fractal structure. | Fractal new Moon. |
Recursive pentagon. | Recursive 5-star. |
Fractal piano keyboard. | Untitled 0194. | Untitled 0264. |
Binomial multiplicative cascade with ponderations equal to 0.4 -left- and 1-0.4=0.6 -right-. | Binomial multiplicative cascade with ponderations equal to 0.3 -left- and 1-0.3=0.7 -right-. |