Computation of the roots of Z3=1 using Newton's method [Calcul des racines de Z3=1 grâce à la méthode de Newton].




The three black squares display the three complex roots Z=cos(2.k.pi/3)+i*sin(2.k.pi/3) for k={0 -middle right-,1 -top left-,2 -bottom left-}.


[Plus d'informations à propos de la Méthode de Newton -en français/in french-]


See some related pictures (possibly including this one) displaying the computation of the roots of Zn=1 using Newton's method:


Z2=1

Z3=1

Z4=1

Z5=1

Z6=1

Z7=1

Z8=1


See some related pictures (possibly including this one) displaying the Newton's method when computing the roots of Zn=1 -sixteen trajectories are exhibibited, their starting points being the big circular dots-:


Z2=1

Z3=1

Z4=1

Z5=1

Z6=1

Z7=1

Z8=1



(CMAP28 WWW site: this page was created on 06/29/2020 and last updated on 10/11/2024 21:12:47 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2020-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2020-2024.