An extended Menger Sponge -iteration 7- displaying the 1.000 first digits -base 2- of the Champernowne number (=0.1 10 11 100 101 110 111 1000...) -using all base 2 integer numbers- periodically repeated in order to obtain 988.569.846 digits [Une éponge de Menger généralisée -itération 7- visualisant les 1.000 premières chiffres -base 2- du nombre de Champernowne (=0.1 10 11 100 101 110 111 1000...) -utilisant tous les nombres entiers en base 2- répétés périodiquement afin d'obtenir 988.569.846 chiffres].
log(20) --------- = 2.726833027860842... log(3)The "standard" Menger sponge can be defined by means of subdivision rules. Here is the way how each of the 27 cubes of the "standard" Menger sponge at a given level is subdivided:
"standard" Menger sponge _____________________ / \ TTT TFT TTT TFT FFF TFT TTT TFT TTT \_/ Sierpinski carpetor again:
TTT TFT TTT TFT FFF TFT TTT TFT TTTwhere 'T' ('True') and 'F' ('False') means respectively "subdivide the current cube" and "do not subdivide and destroy the current cube". The rules are repeated at each level, but they can be changed periodically and for example:
TTT TFT TTT TFT FFF TFT TTT TFT TTT FFF FTF FFF FTF TTT FTF FFF FTF FFF \___________________________________/ \___________________________________/ "standard" Menger sponge complementalternates the "standard" Menger sponge and its complement. Obviously many other rules do exist as shown below...
100 digits periodically repeated in order to obtain 1.539.972 digits. |
100 digits periodically repeated in order to obtain 520.542.072 digits. |
1.000 digits periodically repeated in order to obtain 1.580.823 digits. |
1.000 digits periodically repeated in order to obtain 988.569.846 digits. |
10.000 digits periodically repeated in order to obtain 1.360.800 digits. |
10.000 digits periodically repeated in order to obtain 531.370.800 digits. |
0 --> F 1 --> T