A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section- [Un ensemble de Julia brumeux dans l'ensemble des pseudo-octonions (comme un 'MandelBulb': un 'JuliaBulb') calculé pour A=(-0.581514...,+0.635888...,0,0,0,0,0,0) et avec une rotation autour de l'axe X -section tridimensionnelle-].




See some zooms in:




See the dynamics of this process when changing the two first components (-0.5815147625160462 and +0.6358885017421603) of the polynomial 'P' -see the following definition- according to a travel along the border of the Mandelbrot set in the complex plane:




This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree and the following eight functions (where the exponent 4 as well as the multiplicative factor 4 are also called the degree):
                    
                    P(o) = 1*o + {-0.5815147625160462,+0.6358885017421603,0,0,0,0,0,0}
                    
                                       4
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    
                    fA1(A1 ,A1 ) = 4*(A1 +A1 )
                          1   2         1   2
                    
                    fA2(A2 ,A2 ) = 4*(A2 +A2 )
                          1   2         1   2
                    
                    fA3(A3 ,A3 ) = 4*(A3 +A3 )
                          1   2         1   2
                    
                    fA4(A4 ,A4 ) = 4*(A4 +A4 )
                          1   2         1   2
                    
                    fA5(A5 ,A5 ) = 4*(A5 +A5 )
                          1   2         1   2
                    
                    fA6(A6 ,A6 ) = 4*(A6 +A6 )
                          1   2         1   2
                    
                    fA7(A7 ,A7 ) = 4*(A7 +A7 )
                          1   2         1   2



See some Julia sets (including this one) with various degrees:

Degree=2:  
Degree=3:  
Degree=4:  
Degree=8:  
Degree=9:


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 11/29/2014 and last updated on 10/11/2024 21:06:19 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Julia]]
[Please visit the related ArtAndScience picture gallery [Visitez la galerie d'images ArtAndScience associée]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2014-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2014-2024.