Bidimensional Hilbert Curve -iteration 4-. |
Tridimensional Hilbert Curve -iteration 3-. |
Along the border of the Mandelbrot set. |
Along the border of the Mandelbrot set. |
Computation of the roots of Z^3=1 using Newton's method. |
Computation of the roots of Z^5=1 using Newton's method. |
The quaternionic Mandelbrot set -tridimensional cross-section-. |
Zoom in on the quaternionic Mandelbrot set -tridimensional cross-sections-. |
Beautiful self-similarity. |
Bidimensional display of the rounding-off errors when computing the Verhulst dynamics. |
Tridimensional display of the rounding-off errors when computing the Verhulst dynamics. |
The octonionic Julia set computed with A=(0,1,0,0,0,0,0,0) -tridimensional cross-section-. |
The octonionic Julia set computed with A=(-0.58...,+0.63...,0,0,0,0,0,0) -tridimensional cross-section-. |
Bidimensional Hilbert Curve -iteration 4-. |
Tridimensional Hilbert Curve -iteration 3-. |
Tridimensional Hilbert Curve -iteration 4-. |
Various bidimensional fractal crosses. |
Tridimensional fractal cross -iteration 5-. |
Tridimensional fractal cross -iteration 5-. |
A foggy 'MandelBox' -tridimensional cross-section-. |
Close-up on a foggy 'MandelBox' -tridimensional cross-section-. |
An extended foggy 'MandelBox' -tridimensional cross-section-. |
A tridimensional fractal structure. |
A tridimensional fractal structure. |
Fractal new Moon. |
Recursive pentagon. |
Recursive 5-star. |
The Menger sponge -iteration 1-. |
The Menger sponge -iteration 2-. |
The Menger sponge -iteration 3-. |
The Menger sponge -iteration 4-. |
The Menger sponge -iteration 5-. |
The 64 first lines of the Pascal's Triangle. |
A perfect bidimensional fractal tree and the self-similarity. |
Fractal piano keyboard. |
No Title 0194. |
Binomial multiplicative cascade with ponderations equal to 0.4 -left- and 1-0.4=0.6 -right-. |
Binomial multiplicative cascade with ponderations equal to 0.3 -left- and 1-0.3=0.7 -right-. |