click to view the MPEG movie (cliquez pour voir le film MPEG)

Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb') -tridimensional cross-section- [Zoom sur un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions (un 'MandelBulb') -section tridimensionnelle-].




This Mandelbrot set was computed with a polynomial 'P' of the first degree and the following four functions:
                    P(q) = 1*q + q
                                  C
                                       2
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    fT(T ,T ) = 2*(T +T )
                        1  2        1  2
                    fP(P ,P ) = 2*(P +P )
                        1  2        1  2
                    fA(A ,A ) = 2*(A +A )
                        1  2        1  2



See the sixteen close-ups:

Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-  
Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-  
Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-  
Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section- Zoom in on a pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-tridimensional cross-section-


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 01/19/2011 and last updated on 05/12/2021 19:10:15 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): quaternionic numbers, pseudo-quaternionic numbers, Mandelbrot set [Voir le(s) commentaire(s) suivant(s): quaternions, pseudo-quaternions, ensemble de Mandelbrot]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François Colonna, 2011-2021.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2011-2021.