Click to download and possibly see the movie [Cliquez pour télécharger et voir éventuellement le film]

Computation of the roots of Q3=1 using Newton's method with translation along the third axis of the quaternionic space [Calcul des racines de Q3=1 grâce à la méthode de Newton avec translation le long du troisième axe de l'espace des quaternions].




See some visualizations of the obtained quaternionic fractal set:

The quaternionic fractal set obtained when computing the roots of Q^3=1 using Newton's method with translation along the third axis of the quaternionic space -tridimensional cross-section- The quaternionic fractal set obtained when computing the roots of Q^3=1 using Newton's method with translation along the third axis of the quaternionic space -tridimensional cross-section-


See some artistic views of the obtained quaternionic fractal set:

Artistic view of the quaternionic fractal set obtained when computing the roots of Q^3=1 using Newton's method with translation along the third axis of the quaternionic space -tridimensional cross-section- Artistic view of the quaternionic fractal set obtained when computing the roots of Q^3=1 using Newton's method with translation along the third axis of the quaternionic space -tridimensional cross-section-


(CMAP28 WWW site: this page was created on 12/12/2006 and last updated on 01/02/2025 12:59:28 -CET-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2006-2025.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2006-2025.