Bidimensional Hilbert Curve -iteration 6- [Courbe de Hilbert bidimensionnelle -itération 6-].








See various bidimensional Hilbert and Peano curves (possibly including this one):




See bidimensional Hilbert curves, their nodes being "loaded" with some data (related to prime numbers, real number digits,...):

 
See the used color set to display the parameter T.  
See the used color set to display the pi digits.  







See various tridimensional Hilbert and Peano curves (possibly including this one):




See tridimensional Hilbert curves, their nodes being "loaded" with some data (related to prime numbers, real number digits,...):

 
See the used color set to display the parameter T.  
See the used color set to display the pi digits.








The bidimensional Peano Surjection:

Giuseppe Peano defined the following surjection :
                    [0,1] --> [0,1]x[0,1]
Let's T being a real number defined using the base 3 :
                    T    = 0.A1A2A3...  [0,1] with Ai  {0,1,2}
Let's X(T) and Y(T) being two real functions of T defined as :
                    X(T) = 0.B1B2B3...  [0,1] with Bi  {0,1,2}
                    Y(T) = 0.C1C2C3...  [0,1] with Ci  {0,1,2}
with :
                    Bn = A2n-1 if A2+A4+...+A2n-0 is even
                    Bn = 2-A2n-1 otherwise

                    Cn = A2n if A1+A3+...+A2n-1 is even
                    Cn = 2-A2n otherwise


These two functions X(T) and Y(T) are the coordinates of a point P(T) inside the [0,1]x[0,1] square. The displayed "curve" -as little spheres- is the trajectory of P(T) when T varies from 0 (lower left corner) to 1-epsilon (upper right corner).


Here are the four first bidimensional Peano curves with an increasing number of digits {2,4,6,8}:

[See the used color set to display the parameter T]



2-The tridimensional Peano Surjection:

A tridimensional surjection can be defined :
                    [0,1] --> [0,1]x[0,1]x[0,1]
as a generalization of the bidimensional one.

Let's T being a real number defined using the base 3 :
                    T    = 0.A1A2A3...  [0,1] with Ai  {0,1,2}
Let's X(T), Y(T) and Z(T) being three real functions of T defined as:
                    X(T) = 0.B1B2B3...  [0,1] with Bi  {0,1,2}
                    Y(T) = 0.C1C2C3...  [0,1] with Ci  {0,1,2}
                    Y(T) = 0.D1D2D3...  [0,1] with Di  {0,1,2}
with :
                    Bn = A3n-2 if A3+A6+...+A3n-0 is even
                    Bn = 2-A3n-2 otherwise

                    Cn = A3n-1 if A2+A5+...+A3n-1 is even
                    Cn = 2-A3n-1 otherwise

                    Dn = A3n if A1+A4+...+A3n-2 is even
                    Dn = 2-A3n otherwise


These three functions X(T), Y(T) and Z(T) are the coordinates of a point P(T) inside the [0,1]x[0,1]x[0,1] cube. The displayed "curve" is the trajectory of P(T) -displayed as little spheres- when T varies from 0 (lower left corner) to 1-epsilon (upper right corner).


Here are the three first tridimensional Peano curves with an increasing number of digits {3,6,9}:

[See the used color set to display the parameter T]








The bidimensional Hilbert Curves:

Let's C1(T) being a parametric curve defined by means of 2 real functions of T (T [0,1]) X1(T) [0,1] and Y1(T) [0,1] such as :
                    X1(T=0)=0 Y1(T=0)=0 (lower left corner)
                    X1(T=1)=1 Y1(T=1)=0 (lower right corner)


Then one defines a sequence of curves Ci(T) (i >= 1) as follows :
                    Ci(T) = {Xi(T),Yi(T)}  [0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T)}  [0,1]x[0,1]

                    if T  [0,1/4[:
                              Xi+1(T) =   Yi(4T-0)
                              Yi+1(T) =   Xi(4T-0)
                                                   Transformation 1
                    if T  [1/4,2/4[:
                              Xi+1(T) =   Xi(4T-1)
                              Yi+1(T) = 1+Yi(4T-1)
                                                   Transformation 2
                    if T  [2/4,3/4[:
                              Xi+1(T) = 1+Xi(4T-2)
                              Yi+1(T) = 1+Yi(4T-2)
                                                   Transformation 3
                    if T  [3/4,1]:
                              Xi+1(T) = 2-Yi(4T-3)
                              Yi+1(T) = 1-Xi(4T-3)
                                                   Transformation 4

Please note that 4=2d where d=2 is the space dimension.



See a special C1(T) curve in order to understand the geometrical meaning of the 4 transformations and of their order .


Here are the five first bidimensional Hilbert curves with an increasing number of iterations :

[See the used color set to display the parameter T]


Here are some examples of Hilbert-like bidimensional curves using different generating curves :


















The tridimensional Hilbert Curves:

Let's C1(T) being a parametric curve defined by means of 3 real functions of T (T [0,1]) X1(T) [0,1], Y1(T) [0,1] and Z1(T) [0,1] such as :
                    X1(T=0)=0 Y1(T=0)=0 Z1(T=0)=0 (lower left foreground corner)
                    X1(T=1)=1 Y1(T=1)=0 Z1(T=1)=0 (lower right foreground corner)


Then one defines a sequence of curves Ci(T) (i >= 1) as follows :
                    Ci(T) = {Xi(T),Yi(T),Zi(T)}  [0,1]x[0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T),Zi+1(T)}  [0,1]x[0,1]x[0,1]

                    if T  [0,1/8[:
                              Xi+1(T) =   Xi(8T-0)
                              Yi+1(T) =   Zi(8T-0)
                              Zi+1(T) =   Yi(8T-0)
                                                   Transformation 1
                    if T  [1/8,2/8[:
                              Xi+1(T) =   Zi(8T-1)
                              Yi+1(T) = 1+Yi(8T-1)
                              Zi+1(T) =   Xi(8T-1)
                                                   Transformation 2
                    if T  [2/8,3/8[:
                              Xi+1(T) = 1+Xi(8T-2)
                              Yi+1(T) = 1+Yi(8T-2)
                              Zi+1(T) =   Zi(8T-2)
                                                   Transformation 3
                    if T  [3/8,4/8[:
                              Xi+1(T) = 1+Zi(8T-3)
                              Yi+1(T) = 1-Xi(8T-3)
                              Zi+1(T) = 1-Yi(8T-3)
                                                   Transformation 4
                    if T  [4/8,5/8[:
                              Xi+1(T) = 2-Zi(8T-4)
                              Yi+1(T) = 1-Xi(8T-4)
                              Zi+1(T) = 1+Yi(8T-4)
                                                   Transformation 5
                    if T  [5/8,6/8[:
                              Xi+1(T) = 1+Xi(8T-5)
                              Yi+1(T) = 1+Yi(8T-5)
                              Zi+1(T) = 1+Zi(8T-5)
                                                   Transformation 6
                    if T  [6/8,7/8[:
                              Xi+1(T) = 1-Zi(8T-6)
                              Yi+1(T) = 1+Yi(8T-6)
                              Zi+1(T) = 2-Xi(8T-6)
                                                   Transformation 7
                    if T  [7/8,1]:
                              Xi+1(T) =   Xi(8T-7)
                              Yi+1(T) = 1-Zi(8T-7)
                              Zi+1(T) = 2-Yi(8T-7)
                                                   Transformation 8

Please note that 8=2d where d=3 is the space dimension.



See a special C1(T) curve in order to understand the geometrical meaning of the 8 transformations and of their order .


Here are the four first tridimensional Hilbert curves with an increasing number of iterations :

[See the used color set to display the parameter T]


Here are some examples of Hilbert-like tridimensional curves using different generating curves and in particular "open" knots :









[More information about Peano Curves and Infinite Knots -in english/en anglais-]
[Plus d'informations à propos des Courbes de Peano et des Nœuds Infinis -en français/in french-]


[Plus d'informations sur ce sujet et à propos du remplissage des variétés bi- et tridimensionnelles -en français/in french-]
[More information about this subject and the filling of bi- and tridimensional manifolds -in english/en anglais-]

[Plus d'informations sur ce sujet et à propos du remplissage des variétés bi- et tridimensionnelles -en français/in french-]
[More information about this subject and the filling of bi- and tridimensional manifolds -in english/en anglais-]


(CMAP28 WWW site: this page was created on 01/01/2023 and last updated on 06/24/2023 14:40:34 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]


[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François Colonna, 2023-2023.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2023.