A Bidimensional Hilbert-like Curve defined with {X1(...),Y1(...)} -iteration 1- [Une courbe bidimensionnelle du type Hilbert définie avec {X1(...),Y1(...)} -itération 1-].
The bidimensional Hilbert Curves:
Let's C1(T) being
a parametric curve
defined by means of 2 real functions of T
(T ∈ [0,1])
X1(T) ∈ [0,1] and Y1(T) ∈ [0,1]
such as
:
X1(T=0)=0 Y1(T=0)=0 (lower left corner)
X1(T=1)=1 Y1(T=1)=0 (lower right corner)
Then one defines a sequence of curves Ci(T) (i >= 1) as follows
:
Ci(T) = {Xi(T),Yi(T)} ∈ [0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T)} ∈ [0,1]x[0,1]
if T ∈ [0,1/4[:
Xi+1(T) = Yi(4T-0)
Yi+1(T) = Xi(4T-0)
Transformation 1
if T ∈ [1/4,2/4[:
Xi+1(T) = Xi(4T-1)
Yi+1(T) = 1+Yi(4T-1)
Transformation 2
if T ∈ [2/4,3/4[:
Xi+1(T) = 1+Xi(4T-2)
Yi+1(T) = 1+Yi(4T-2)
Transformation 3
if T ∈ [3/4,1]:
Xi+1(T) = 2-Yi(4T-3)
Yi+1(T) = 1-Xi(4T-3)
Transformation 4
Please note that 4=2d where d=2 is the space dimension.
Here are the five first bidimensional Hilbert curves with an increasing number of iterations
:
[See the used color set to display the parameter T]
See the construction of some of them
:
Here are some examples of Hilbert-like bidimensional curves using different generating curves
:
Here is the "mapping" of a few pictures by means of a bidimensional Hilbert curve:
:
width="TaBlE_WiDtH%"
| ==> [iteration 11] | |
width="TaBlE_WiDtH%"
| ==> [iteration 10] | |
width="TaBlE_WiDtH%"
| ==> [iteration 9] | |
width="TaBlE_WiDtH%"
| ==> [iteration 10] | |
(CMAP28 WWW site: this page was created on 04/29/2022 and last updated on 01/16/2025 11:27:25 -CET-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François COLONNA, 2022-2025.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2025.