A Bidimensional Hilbert-like Curve defined with {X2(...),Y2(...)} -iteration 2- [Une courbe bidimensionnelle du type Hilbert définie avec {X2(...),Y2(...)} -itération 2-].





The bidimensional Hilbert Curves:

Let's C1(T) being a parametric curve defined by means of 2 real functions of T (T [0,1]) X1(T) [0,1] and Y1(T) [0,1] such as :
                    X1(T=0)=0 Y1(T=0)=0 (lower left corner)
                    X1(T=1)=1 Y1(T=1)=0 (lower right corner)


Then one defines a sequence of curves Ci(T) (i >= 1) as follows :
                    Ci(T) = {Xi(T),Yi(T)}  [0,1]x[0,1] --> Ci+1(T) = {Xi+1(T),Yi+1(T)}  [0,1]x[0,1]

                    if T  [0,1/4[:
                              Xi+1(T) =   Yi(4T-0)
                              Yi+1(T) =   Xi(4T-0)
                                                   Transformation 1
                    if T  [1/4,2/4[:
                              Xi+1(T) =   Xi(4T-1)
                              Yi+1(T) = 1+Yi(4T-1)
                                                   Transformation 2
                    if T  [2/4,3/4[:
                              Xi+1(T) = 1+Xi(4T-2)
                              Yi+1(T) = 1+Yi(4T-2)
                                                   Transformation 3
                    if T  [3/4,1]:
                              Xi+1(T) = 2-Yi(4T-3)
                              Yi+1(T) = 1-Xi(4T-3)
                                                   Transformation 4

Please note that 4=2d where d=2 is the space dimension.


Here are the five first bidimensional Hilbert curves with an increasing number of iterations :

[See the used color set to display the parameter T]

See the construction of some of them :




Here are some examples of Hilbert-like bidimensional curves using different generating curves :









Here is the "mapping" of a few pictures by means of a bidimensional Hilbert curve: :

width="TaBlE_WiDtH%"
==>
[iteration 11]
width="TaBlE_WiDtH%"
==>
[iteration 10]
width="TaBlE_WiDtH%"
==>
[iteration 9]
width="TaBlE_WiDtH%"
==>
[iteration 10]



(CMAP28 WWW site: this page was created on 04/29/2022 and last updated on 01/16/2025 11:27:25 -CET-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2022-2025.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2025.