The Syracuse conjecture for U(0)={1,2,3,4,...,256} -monodimensional display- [La conjecture de Syracuse pour U(0)={1,2,3,4,...,256} -visualisation monodimensionnelle-].
U = N (an integer number [un nombre entier]) > 0 0
if U is even [si U est pair] : n n
U n U = ---- n+1 2
else [sinon] :
U = 3*U + 1 n+1 n
U(0) = 7 U(1) = 22 U(2) = 11 U(3) = 34 U(4) = 17 U(5) = 52 U(6) = 26 U(7) = 13 U(8) = 40 U(9) = 20 U(10) = 10 U(11) = 5 U(12) = 16 U(13) = 8 U(14) = 4 U(15) = 2 U(16) = 1
U(0) = 1 (0.00%) : {U(n)}={0001} U(0) = 2 (50.00%) : {U(n)}={0001,0002} U(0) = 3 (62.50%) : {U(n)}={0001,0002,0004,0008,0016,0005,0010,0003} U(0) = 4 (66.67%) : {U(n)}={0001,0002,0004} U(0) = 5 (66.67%) : {U(n)}={0001,0002,0004,0008,0016,0005} U(0) = 6 (66.67%) : {U(n)}={0001,0002,0004,0008,0016,0005,0010,0003,0006} U(0) = 7 (64.71%) : {U(n)}={0001,0002,0004,0008,0016,0005,0010,0020,0040,0013,0026,0052,0017,0034,0011,0022,0007} U(0) = 8 (75.00%) : {U(n)}={0001,0002,0004,0008} U(0) = 9 (65.00%) : {U(n)}={0001,0002,0004,0008,0016,0005,0010,0020,0040,0013,0026,0052,0017,0034,0011,0022,0007,0014,0028,0009} U(0) = 10 (71.43%) : {U(n)}={0001,0002,0004,0008,0016,0005,0010}
0001 0002 0004 0008 0016 0005 0010 0020 0040 0013 0026 0052 0017 0034 0011 0022 0007 0014 0028 0009 0001 0002 0004 0008 0016 0005 0010 0020 0040 0013 0026 0052 0017 0034 0011 0022 0007 0001 0002 0004 0008 0016 0005 0010 0003 0006 0001 0002 0004 0008 0016 0005 0010 0003 0001 0002 0004 0008 0016 0005 0010 0001 0002 0004 0008 0016 0005 0001 0002 0004 0008 0001 0002 0004 0001 0002 0001
--> 0014 0028 0009 | --> 0020 0040 0013 0026 0052 0017 0034 0011 0022 0007 | | --> 0006 | | |--> 0003 | --> 0010 | --> 0016 0005 | --> 0008 | --> 0004 | --> 0002 | 0001