The Syracuse conjecture for U(0)={1,2,3,4,...,262144} [La conjecture de Syracuse pour U(0)={1,2,3,4,...,262144}].
U = N (an integer number [un nombre entier]) > 0 0
if U is even [si U est pair] : n n
U n U = ---- n+1 2
else [sinon] :
U = 3*U + 1 n+1 n
U(0) = 7 U(1) = 22 U(2) = 11 U(3) = 34 U(4) = 17 U(5) = 52 U(6) = 26 U(7) = 13 U(8) = 40 U(9) = 20 U(10) = 10 U(11) = 5 U(12) = 16 U(13) = 8 U(14) = 4 U(15) = 2 U(16) = 1
5----4----3 | | . | | . 6 1----2 . | | | | 7----8----9----10
tst(N) = number of iterations of the Syracuse sequence starting with N before reaching the first {[[4,] 2,] 1} sequence (or Total Stopping Time).