The Syracuse conjecture for U(0)={1,2,3,4,...,256} -monodimensional display- [La conjecture de Syracuse pour U(0)={1,2,3,4,...,256} -visualisation monodimensionnelle-].
U = N (an integer number [un nombre entier]) > 0 0
if U is even [si U est pair] : n n
U n U = ---- n+1 2
else [sinon] :
U = 3*U + 1 n+1 n
U(0) = 7 U(1) = 22 U(2) = 11 U(3) = 34 U(4) = 17 U(5) = 52 U(6) = 26 U(7) = 13 U(8) = 40 U(9) = 20 U(10) = 10 U(11) = 5 U(12) = 16 U(13) = 8 U(14) = 4 U(15) = 2 U(16) = 1
{7,7} C=7 {7,22} C=7 {7,11} C=7 {7,34} C=7 {7,17} C=7 {7,52} C=7 {7,26} C=7 {7,13} C=7 {7,40} C=7 {7,20} C=7 {7,10} C=7 {7,5} C=7 {7,16} C=7 {7,8} C=7 {7,4} C=7 {7,2} C=7 {7,1} C=7where 'C' denotes the color of the points.