The Syracuse conjecture for U(0)={1,2,3,4,...,128} -monodimensional display- [La conjecture de Syracuse pour U(0)={1,2,3,4,...,128} -visualisation monodimensionnelle-].
U = N (an integer number [un nombre entier]) > 0 0
if U is even [si U est pair] : n n
U n U = ---- n+1 2
else [sinon] :
U = 3*U + 1 n+1 n
U(0) = 7 U(1) = 22 U(2) = 11 U(3) = 34 U(4) = 17 U(5) = 52 U(6) = 26 U(7) = 13 U(8) = 40 U(9) = 20 U(10) = 10 U(11) = 5 U(12) = 16 U(13) = 8 U(14) = 4 U(15) = 2 U(16) = 1
{7,7} L=0 {7,22} L=1 {7,11} L=2 {7,34} L=3 {7,17} L=4 {7,52} L=5 {7,26} L=6 {7,13} L=7 {7,40} L=8 {7,20} L=9 {7,10} L=10 {7,5} L=11 {7,16} L=12 {7,8} L=13 {7,4} L=14 {7,2} L=15 {7,1} L=16where 'L' denotes the luminance of the points.