A 3x3x3 Menger Sponge -iteration 4- using the 9 first prime numbers and displaying the number 6.858 (=9.999-3.141) [Une éponge de Menger 3x3x3 -itération 4- utilisant les 9 premiers nombres premiers et visualisant le nombre 6.858 (=9.999-3.141)].




Please note that 6.858+3.141 = 9.999.


Here are the ten {0,1,2,3,4,5,6,7,8,9} digits displayed using respectively the ten following 3x3x3 cube cuttings:


0 [1]

1 [PN(1)=2]

2 [PN(2)=3]

3 [PN(3)=5]

4 [PN(4)=7]

5 [PN(5)=11]

6 [PN(6)=13]

7 [PN(7)=17]

8 [PN(8)=19]

9 [PN(9)=23]


where "X [PN(X)=Y]" means the X-th prime number is equal to Y giving the number of little cubic holes defining the Menger Sponge displaying the digit X.

[More information about the Menger Sponge]

Obviously, on this picture only the {5,6,8} codes are used:


iteration 1: digit 6

iteration 2: digit 8

iteration 3: digit 5

iteration 4: digit 8



See some related pictures (including this one):


3.141




3

3.1

3.14

3.141

3.1415

3.14159

3.14159






6.858



6.85840

6.85840








4.567

7.654

5.555

6.666

7.777



7.77777

8.88888

9.99999



(CMAP28 WWW site: this page was created on 04/11/2024 and last updated on 07/07/2024 12:18:47 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]
[Please visit the related Pi picture gallery [Visitez la galerie d'images Pi associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2024-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2024-2024.