Monthly Best Of on 09/28/2010




Self-transformation of an arbitrary geometrical texture

Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 09/28/2010 and last updated on 10/03/2024 17:02:04 -CEST-)




Contents of this page:


1-The 128 most referenced Pictures (*):

(*): Undisplayed pictures -if any- do not exist.



A tridimensional Möbius-like manifold defined by means of three tridimensional fields
1-244 reference(s)
From low to high galaxy density in the local universe (the depth is displayed by means of the luminance)
2-180 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
3-176 reference(s)
The Lorenz attractor
4-146 reference(s)
Tridimensional representation of a quadridimensional Calabi-Yau manifold
5-133 reference(s)
Quark and gluon structure of a nucleon
6-129 reference(s)
Quark and gluon structure of a nucleon
7-110 reference(s)
Electron-positron scattering
8-86 reference(s)
Paradoxal Monument Valley at sunset, 'World of Tiers' -a Tribute to Philip José Farmer-
9-84 reference(s)
The random walk of photons escaping the Sun
10-81 reference(s)
The foggy Babel Tower -a Tribute to Brueghel the Elder-
11-80 reference(s)
The random walk of photons escaping the Sun
12-78 reference(s)
The random walk of photons escaping the Sun
13-75 reference(s)
The Möbius strip
14-73 reference(s)
Artistic view of the prime numbers
15-72 reference(s)
Welcome aboard a Virtual Space-Time Travel Machine
16-69 reference(s)
Hypercube
17-66 reference(s)
From the infinitely small to the infinitely big
18-63 reference(s)
Along the border of the Mandelbrot set
19-61 reference(s)
Artistic view of the Big Bang
20-60 reference(s)
Intertwining
21-60 reference(s)
A tridimensional fractal manifold defined by means of three tridimensional fields
22-59 reference(s)
Bidimensional visualization of the Verhulst dynamics -(grey,orange,red)display negative Lyapunov exponents, (yellow,green,blue) display positive Lyapunov exponents-
23-57 reference(s)
Autostereogram with an hidden volcano
24-55 reference(s)
Fractal synthesis of mountains with vegetation and stormy clouds
25-55 reference(s)
A quaternionic Julia set -tridimensional cross-section-
26-55 reference(s)
The same bidimensional scalar field displayed with 4 different color palettes
27-54 reference(s)
Autostereogram with an hidden volcano
28-52 reference(s)
Recursive intertwining
29-49 reference(s)
From Pluto to the Sun (non linear scales)
30-49 reference(s)
24 evenly distributed points on a sphere by means of simulated annealing
31-48 reference(s)
The trajectories of bidimensional fractal aggregates obtained by means of a 50% pasting process during collisions of particles submitted to a vertical field of gravity
32-47 reference(s)
The Klein bottle
33-47 reference(s)
The Scream -a Tribute to Edvard Munch-
34-47 reference(s)
Jean-François COLONNA (on 11/17/1994)with its fractal mountains
35-47 reference(s)
Tridimensional display of the Riemann Zeta function inside [-10.0,+60.0]x[-35.0,+35.0] (bird's-eye view)
36-46 reference(s)
N-body problem integration (N=4: one star, one heavy planet and one light planet with a satellite)computed with 2 different optimization options on the same computer (sensitivity to rounding-off errors)
37-46 reference(s)
Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-
38-46 reference(s)
2.pi rotation about Y and Z axes of a quaternionic Julia set -tridimensional cross-sections-
39-46 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
40-46 reference(s)
The generalized Ulam spiral displaying 100 numbers
41-44 reference(s)
Alien
42-43 reference(s)
Rotation about the X axis of the Lorenz attractor
43-42 reference(s)
The quaternionic Julia set computed with A=(0,1,0,0)-tridimensional cross-section-
44-42 reference(s)
Tridimensional display of a linear superposition of 6 eigenstates of the Hydrogen atom (tridimensional computation)
45-42 reference(s)
Autostereogram of Monument Valley
46-40 reference(s)
Animation of a sunrise on mountains
47-40 reference(s)
Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -a Tribute to José Hernández- -tridimensional cross-section-
48-40 reference(s)
A fractal landscape
49-40 reference(s)
A shell (Jeener surface 1)in motion
50-40 reference(s)
Evolution of a tridimensional representation of a quadridimensional Calabi-Yau manifold
51-40 reference(s)
Tridimensional representation of a hexadimensional Calabi-Yau manifold
52-40 reference(s)
Rotation about the Y (vertical)axis of a tridimensional representation of a quadridimensional Calabi-Yau manifold that can also be viewed as a set of 4x3 stereograms
53-40 reference(s)
Autostereogram with an hidden volcano
54-39 reference(s)
The generalized Ulam spiral displaying 1024 numbers
55-38 reference(s)
Inside the Gate
56-38 reference(s)
Generation of the 63 first Conway's surreal numbers
57-36 reference(s)
Fractal intertwining
58-36 reference(s)
Beyond the Gate
59-36 reference(s)
Monument Valley at sunrise
60-36 reference(s)
A quaternionic Julia set -tridimensional cross-section-
61-36 reference(s)
Tridimensional fractal structure
62-36 reference(s)
Artistic view of a quadridimensional Calabi-Yau manifold
63-36 reference(s)
Tridimensional fractal aggregate obtained by means of a 100% pasting process during collisions of particles submitted to an attractive central field of gravity
64-35 reference(s)
Cloudy Monument Valley
65-35 reference(s)
Mountains at sunrise
66-35 reference(s)
Close-up on a pseudo-quaternionic Mandelbrot set (a 'Mandelbulb')-tridimensional cross-section-
67-35 reference(s)
Close-up on a pseudo-quaternionic Mandelbrot set (a 'Mandelbulb')-tridimensional cross-section-
68-35 reference(s)
Rotation about the Y (vertical)axis of the Lorenz attractor that can also be viewed as a set of 4x3 stereograms
69-35 reference(s)
Intertwining based on the geometry of the Boy surface
70-35 reference(s)
Autostereogram with an hidden ring and ghost bows
71-34 reference(s)
The Gate
72-34 reference(s)
Close-up on a pseudo-quaternionic Mandelbrot set (a 'Mandelbulb')-tridimensional cross-section-
73-34 reference(s)
Autostereogram of a quaternionic Julia set -tridimensional cross-section-
74-33 reference(s)
Artistic view of Monument Valley
75-33 reference(s)
The Bonan-Jeener-Klein triple bottle
76-33 reference(s)
The Jeener-Klein triple bottle
77-33 reference(s)
The normal field of a fractal surface defined by means of three bidimensional fields
78-32 reference(s)
Botticelli anomaly on the Moon
79-32 reference(s)
Tridimensional display of the dynamics of a linear superposition of 6 eigenstates of the Hydrogen atom (bidimensional computation)
80-32 reference(s)
Cliffs at sunset
81-32 reference(s)
Autostereogram with an hidden volcano
82-31 reference(s)
Mountains and light cloud dynamics -this sequence being periodical-
83-31 reference(s)
Computation of the Lorenz attractor on three different computers (the Red one, the Green one and the Blue one: sensitivity to rounding-off errors)
84-31 reference(s)
Tridimensional visualization of a bidimensional turbulent flow
85-31 reference(s)
A shell (Jeener surface 1)
86-31 reference(s)
Intertwining based on the geometry of the sphere
87-31 reference(s)
The self-similarity of the von Koch curve
88-30 reference(s)
Autostereogram with an hidden volcano and 64 self-portraits
89-30 reference(s)
Happy new year 2000
90-30 reference(s)
An elementary monodimensional binary cellular automaton -184- with random white starting points -on the bottom line-
91-30 reference(s)
Quantum vacuum fluctuations
92-29 reference(s)
Artistic view of a bidimensional texture obtained by means of the self-transformation of a fractal process
93-29 reference(s)
The Birth of the Universe
94-29 reference(s)
Untitled 0031
95-28 reference(s)
Quark and gluon dynamics of the nucleon
96-28 reference(s)
N-body problem integration (N=10)displaying the actual Solar System during one plutonian year -the Sun point of view-
97-28 reference(s)
A shell (Jeener surface 1)
98-28 reference(s)
The relief -modulus- of the function sin(z)with argument mapping
99-28 reference(s)
Self-transformation of an arbitrary geometrical texture
100-27 reference(s)
Mountains and light clouds
101-27 reference(s)
Close-up on a pseudo-quaternionic Mandelbrot set (a 'Mandelbulb')-tridimensional cross-section-
102-27 reference(s)
A pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-'the children round' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-
103-27 reference(s)
Tridimensional fractal structure
104-27 reference(s)
Along the border of the Mandelbrot set
105-26 reference(s)
Exploding tridimensional fractal aggregate
106-26 reference(s)
Synthesis of tridimensional symmetrical geometrical textures
107-26 reference(s)
The Lorenz attractor -sensitivity to integration methods used (Red=Euler, Green=Runge-Kutta/2nd order, Blue=Runge-Kutta/4th order)-
108-26 reference(s)
2.pi rotation about the Y axis of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')-tridimensional cross-section-
109-26 reference(s)
A foggy pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-
110-26 reference(s)
Tridimensional fractal structure
111-26 reference(s)
Synthesis of bidimensional geometrical textures
112-26 reference(s)
Fractal diffusion front in a bidimensional medium obtained by means of a random walk process
113-26 reference(s)
The Boy surface
114-25 reference(s)
Untitled 0049
115-25 reference(s)
The Eratosthene sieve displaying 100x100 numbers
116-25 reference(s)
The Eratosthene sieve displaying 10x10 numbers
117-25 reference(s)
Untitled 0094
118-25 reference(s)
True colors autostereogram of a fractal landscape
119-25 reference(s)
An arbitrary surface (Jeener surface 2)
120-25 reference(s)
A pseudo-quaternionic Mandelbrot set (a 'MandelBulb')-'the children round' or 'the consciousness emerging from Mathematics'- -tridimensional cross-section-
121-25 reference(s)
An extended foggy 'MandelBox' -tridimensional cross-section-
122-25 reference(s)
3-foil torus knots
123-25 reference(s)
Intertwining based on a bidimensional square lattice
124-25 reference(s)
Synthesis of bidimensional geometrical textures
125-25 reference(s)
Bidimensional brownian motion -the colors used (magenta,red,yellow,green,cyan)are an increasing function of the time- and its 'external border' -white-
126-25 reference(s)
The first two iterations of the construction of the von Koch curve
127-24 reference(s)
An Archimedes spiral displaying 1000 numbers
128-24 reference(s)




2-The 128 most referenced Pages (*):

(*): Unclickable pages -if any- do not exist.



1-demo_14
886 reference(s)
2-AVirtualSpaceTimeTravelMachine.Ang
479 reference(s)
3-Fractal.01
425 reference(s)
4-An2000.01.Fra
375 reference(s)
5-AQuoiServentLesMathematiques.01
274 reference(s)
6-EnsembleDesGaleries.DIAPO.0001
272 reference(s)
7-Galerie_DeterministicFractalGeometry.FV
271 reference(s)
8-GenieLogiciel_VisualisationScientifique.01.vv
266 reference(s)
9-NDimensionalDeterministicFractalSets.01.Fra
261 reference(s)
10-FloatingPointNumbers.01.Fra
249 reference(s)
11-EnsembleDesGaleries.DIAPO.0008
244 reference(s)
12-EnsembleDesGaleries.DIAPO.0015
243 reference(s)
13-EnsembleDesGaleries.DIAPO.0030
242 reference(s)
14-EnsembleDesGaleries.DIAPO.0020
242 reference(s)
15-EnsembleDesGaleries.DIAPO.0014
242 reference(s)
16-EnsembleDesGaleries.DIAPO.0002
242 reference(s)
17-Galerie_NonDeterministicFractalGeometryNaturalPhenomenonSynthesis.FV
241 reference(s)
18-EnsembleDesGaleries.DIAPO.0017
241 reference(s)
19-EnsembleDesGaleries.DIAPO.0006
241 reference(s)
20-EnsembleDesGaleries.DIAPO.0018
240 reference(s)
21-EnsembleDesGaleries.DIAPO.0016
240 reference(s)
22-EnsembleDesGaleries.DIAPO.0019
239 reference(s)
23-EnsembleDesGaleries.DIAPO.0003
239 reference(s)
24-EnsembleDesGaleries.DIAPO.0012
238 reference(s)
25-EnsembleDesGaleries.DIAPO.0007
237 reference(s)
26-help.
235 reference(s)
27-EnsembleDesGaleries.DIAPO.0011
235 reference(s)
28-EnsembleDesGaleries.DIAPO.0021
234 reference(s)
29-EnsembleDesGaleries.DIAPO.0748
233 reference(s)
30-EnsembleDesGaleries.DIAPO.0013
233 reference(s)
31-EnsembleDesGaleries.DIAPO.0010
233 reference(s)
32-EnsembleDesGaleries.DIAPO.0005
233 reference(s)
33-Galerie_ArtisticCreation.FV
232 reference(s)
34-EnsembleDesGaleries.DIAPO.0120
232 reference(s)
35-EnsembleDesGaleries.DIAPO.0534
231 reference(s)
36-EnsembleDesGaleries.DIAPO.0022
231 reference(s)
37-EnsembleDesGaleries.DIAPO.0004
231 reference(s)
38-EnsembleDesGaleries.DIAPO.0118
230 reference(s)
39-EnsembleDesGaleries.DIAPO.0009
230 reference(s)
40-EnsembleDesGaleries.DIAPO.0531
229 reference(s)
41-EnsembleDesGaleries.DIAPO.0122
229 reference(s)
42-EnsembleDesGaleries.DIAPO.0121
229 reference(s)
43-EnsembleDesGaleries.DIAPO.0119
229 reference(s)
44-EnsembleDesGaleries.DIAPO.0032
229 reference(s)
45-EnsembleDesGaleries.DIAPO.0028
229 reference(s)
46-present.01.
228 reference(s)
47-SurfaceProjector.01.Ang
228 reference(s)
48-EnsembleDesGaleries.DIAPO.0667
228 reference(s)
49-EnsembleDesGaleries.DIAPO.0536
228 reference(s)
50-EnsembleDesGaleries.DIAPO.0031
228 reference(s)
51-EnsembleDesGaleries.DIAPO.0026
228 reference(s)
52-EnsembleDesGaleries.DIAPO.0749
227 reference(s)
53-EnsembleDesGaleries.DIAPO.0661
227 reference(s)
54-EnsembleDesGaleries.DIAPO.0411
227 reference(s)
55-EnsembleDesGaleries.DIAPO.0347
227 reference(s)
56-EnsembleDesGaleries.DIAPO.0127
227 reference(s)
57-EnsembleDesGaleries.DIAPO.0102
227 reference(s)
58-EnsembleDesGaleries.DIAPO.0027
227 reference(s)
59-EnsembleDesGaleries.DIAPO.0747
226 reference(s)
60-EnsembleDesGaleries.DIAPO.0666
226 reference(s)
61-EnsembleDesGaleries.DIAPO.0538
226 reference(s)
62-EnsembleDesGaleries.DIAPO.0410
226 reference(s)
63-EnsembleDesGaleries.DIAPO.0218
226 reference(s)
64-EnsembleDesGaleries.DIAPO.0173
226 reference(s)
65-EnsembleDesGaleries.DIAPO.0126
226 reference(s)
66-EnsembleDesGaleries.DIAPO.0537
225 reference(s)
67-EnsembleDesGaleries.DIAPO.0444
225 reference(s)
68-EnsembleDesGaleries.DIAPO.0146
225 reference(s)
69-EnsembleDesGaleries.DIAPO.0130
225 reference(s)
70-EnsembleDesGaleries.DIAPO.0129
225 reference(s)
71-EnsembleDesGaleries.DIAPO.0124
225 reference(s)
72-EnsembleDesGaleries.DIAPO.0117
225 reference(s)
73-EnsembleDesGaleries.DIAPO.0115
225 reference(s)
74-EnsembleDesGaleries.DIAPO.0113
225 reference(s)
75-EnsembleDesGaleries.DIAPO.0099
225 reference(s)
76-EnsembleDesGaleries.DIAPO.0029
225 reference(s)
77-AProposSite.01.Fra
225 reference(s)
78-Stereogrammes_AutoStereogrammes.01
224 reference(s)
79-EnsembleDesGaleries.DIAPO.0691
224 reference(s)
80-EnsembleDesGaleries.DIAPO.0653
224 reference(s)
81-EnsembleDesGaleries.DIAPO.0652
224 reference(s)
82-EnsembleDesGaleries.DIAPO.0552
224 reference(s)
83-EnsembleDesGaleries.DIAPO.0533
224 reference(s)
84-EnsembleDesGaleries.DIAPO.0449
224 reference(s)
85-EnsembleDesGaleries.DIAPO.0416
224 reference(s)
86-EnsembleDesGaleries.DIAPO.0336
224 reference(s)
87-EnsembleDesGaleries.DIAPO.0116
224 reference(s)
88-EnsembleDesGaleries.DIAPO.0114
224 reference(s)
89-EnsembleDesGaleries.DIAPO.0104
224 reference(s)
90-EnsembleDesGaleries.DIAPO.0033
224 reference(s)
91-Galerie_GeneralitiesVisualization.DIAPO.0111
223 reference(s)
92-EnsembleDesGaleries.DIAPO.0754
223 reference(s)
93-EnsembleDesGaleries.DIAPO.0690
223 reference(s)
94-EnsembleDesGaleries.DIAPO.0658
223 reference(s)
95-EnsembleDesGaleries.DIAPO.0655
223 reference(s)
96-EnsembleDesGaleries.DIAPO.0535
223 reference(s)
97-EnsembleDesGaleries.DIAPO.0532
223 reference(s)
98-EnsembleDesGaleries.DIAPO.0460
223 reference(s)
99-EnsembleDesGaleries.DIAPO.0454
223 reference(s)
100-EnsembleDesGaleries.DIAPO.0453
223 reference(s)
101-EnsembleDesGaleries.DIAPO.0412
223 reference(s)
102-EnsembleDesGaleries.DIAPO.0214
223 reference(s)
103-EnsembleDesGaleries.DIAPO.0128
223 reference(s)
104-EnsembleDesGaleries.DIAPO.0125
223 reference(s)
105-EnsembleDesGaleries.DIAPO.0112
223 reference(s)
106-EnsembleDesGaleries.DIAPO.0103
223 reference(s)
107-EnsembleDesGaleries.DIAPO.0101
223 reference(s)
108-EnsembleDesGaleries.DIAPO.0100
223 reference(s)
109-EnsembleDesGaleries.DIAPO.0025
223 reference(s)
110-EnsembleDesGaleries.DIAPO.0023
223 reference(s)
111-GenieLogiciel.01.Fra
222 reference(s)
112-Galerie_CelestialMechanics.DIAPO.0021
222 reference(s)
113-EnsembleDesGaleries.DIAPO.0692
222 reference(s)
114-EnsembleDesGaleries.DIAPO.0669
222 reference(s)
115-EnsembleDesGaleries.DIAPO.0660
222 reference(s)
116-EnsembleDesGaleries.DIAPO.0546
222 reference(s)
117-EnsembleDesGaleries.DIAPO.0457
222 reference(s)
118-EnsembleDesGaleries.DIAPO.0456
222 reference(s)
119-EnsembleDesGaleries.DIAPO.0452
222 reference(s)
120-EnsembleDesGaleries.DIAPO.0445
222 reference(s)
121-EnsembleDesGaleries.DIAPO.0443
222 reference(s)
122-EnsembleDesGaleries.DIAPO.0439
222 reference(s)
123-EnsembleDesGaleries.DIAPO.0419
222 reference(s)
124-EnsembleDesGaleries.DIAPO.0413
222 reference(s)
125-EnsembleDesGaleries.DIAPO.0409
222 reference(s)
126-EnsembleDesGaleries.DIAPO.0405
222 reference(s)
127-EnsembleDesGaleries.DIAPO.0215
222 reference(s)
128-EnsembleDesGaleries.DIAPO.0123
222 reference(s)

And now, enjoy visiting A Virtual Space-Time Travel Machine.




Copyright © Jean-François COLONNA, 2010-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2010-2024.