Recursive subdivision of the Golden Rectangle by means of the Golden Ratio -phi- [Subdivision récursive du Rectangle d'Or à l'aide du Nombre d'Or -phi-].




See some related pictures (including this one):




On the left-hand side picture, the two rectangles (the big blue and the small red) are similar, hence:

                     phi        1
                    ----- = ---------
                      1      phi - 1
                       2
                    phi  = phi + 1

The positive root is the Golden Ratio (phi = (1+sqrt(5))/2 = 1,6180339887498949...).


[More information about related non periodical Penrose tilings -in english/en anglais-]
[Plus d'informations à propos des pavages non périodiques de Penrose associés -en français/in french-]


(CMAP28 WWW site: this page was created on 12/12/2017 and last updated on 08/22/2020 11:16:16 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related ArtAndScience picture gallery [Visitez la galerie d'images ArtAndScience associée]]
[Please visit the related ImagesDidactiques picture gallery [Visitez la galerie d'images ImagesDidactiques associée]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2017-2020.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2017-2020.