Bidimensional display of 127 Rational Numbers by means of the Stern-Brocot Tree [Visualisation bidimensionnelle de 127 Nombre Rationnels à l'aide de l'arbre de Stern-Brocot].
Let's define the so-called Median-Mean of two rational numbers A/B and C/D:
A+C
MedianMean(A/B,C/D) = -----
B+D
Nota: the Median-Mean is at the origin of the so-called Simpson Paradox.
'Left', 'Right' and 'Mean' being three rational numbers,
the following recursive algorithm:
Generate(Left,Right)
{
Mean = MedianMean(Left,Right);
Generate(Left,Mean);
Generate(Mean,Right);
}
starting with:
zero=0/1
infinity=1/0
Generate(zero,infinity)
gives the Stern-Brocot tree where all the positive rational numbers (Q+={Mean}) appear once and only once:
level=1 0/1 > > > > > > > > > > > > > > > > > > 1/1 < < < < < < < < < < < < < < < < < < 1/0
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
level=2 0/1 > > > > > > > > 1/2 < < < < < < < < 1/1 > > > > > > > > 2/1 < < < < < < < < 1/0
| * | * | * | * |
| * | * | * | * |
| * | * | * | * |
| * | * | * | * |
level=3 0/1 > > > 1/3 < < < 1/2 > > > 2/3 < < < 1/1 > > > 3/2 < < < 2/1 > > > 3/1 < < < 1/0
| * | * * | * * | * * | * * | * * | * * | * |
| * | * * | * * | * * | * * | * * | * * | * |
(...) (...) (...) (...) (...) (...) (...) (...) (...)
At last, the colored points display the Rational Numbers {1/1,1/2,1/3,1/4,1/5,1/6,1/7,2/11,2/9,3/14,3/13,2/7,3/11,4/15,5/18,3/10,5/17,4/13,2/5,3/8,4/11,5/14,7/19,5/13,8/21,7/18,3/7,5/12,7/17,8/19,4/9,7/16,5/11,2/3,3/5,4/7,5/9,6/11,9/16,7/12,11/19,10/17,5/8,8/13,11/18,13/21,7/11,12/19,9/14,3/4,5/7,7/10,9/13,12/17,8/11,13/18,11/15,4/5,7/9,10/13,11/14,5/6,9/11,6/7,2/1,3/2,4/3,5/4,6/5,7/6,11/9,9/7,14/11,13/10,7/5,11/8,15/11,18/13,10/7,17/12,13/9,5/3,8/5,11/7,14/9,19/12,13/8,21/13,18/11,7/4,12/7,17/10,19/11,9/5,16/9,11/6,3/1,5/2,7/3,9/4,11/5,16/7,12/5,19/8,17/7,8/3,13/5,18/7,21/8,11/4,19/7,14/5,4/1,7/2,10/3,13/4,17/5,11/3,18/5,15/4,5/1,9/2,13/3,14/3,6/1,11/2,7/1}
with coordinates {X=numerator,Y=denominator}
and a luminance proportional to their decimal values.
See some related pictures (including this one):
level=3 |
level=4 |
level=5 |
level=6 |
level=7 |
level=8 |
level=15 |
level=3 |
level=4 |
level=5 |
level=6 |
level=7 |
level=8 |
|
(CMAP28 WWW site: this page was created on 08/14/2022 and last updated on 12/09/2022 12:39:19 -CET-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2022-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2022.