
Bidimensional display of 7 Rational Numbers by means of the Stern-Brocot Tree [Visualisation bidimensionnelle de 7 Nombre Rationnels à l'aide de l'arbre de Stern-Brocot].
Let's define the so-called Median-Mean of two rational numbers A/B and C/D:
A+C
MedianMean(A/B,C/D) = -----
B+D
Nota: the Median-Mean is at the origin of the so-called Simpson Paradox.
'Left', 'Right' and 'Mean' being three rational numbers,
the following recursive algorithm:
Generate(Left,Right)
{
Mean = MedianMean(Left,Right);
Generate(Left,Mean);
Generate(Mean,Right);
}
starting with:
zero=0/1
infinity=1/0
Generate(zero,infinity)
gives the Stern-Brocot tree where all the positive rational numbers (Q+={Mean}) appear once and only once:
level=1 0/1 > > > > > > > > > > > > > > > > > > 1/1 < < < < < < < < < < < < < < < < < < 1/0
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
| * | * |
level=2 0/1 > > > > > > > > 1/2 < < < < < < < < 1/1 > > > > > > > > 2/1 < < < < < < < < 1/0
| * | * | * | * |
| * | * | * | * |
| * | * | * | * |
| * | * | * | * |
level=3 0/1 > > > 1/3 < < < 1/2 > > > 2/3 < < < 1/1 > > > 3/2 < < < 2/1 > > > 3/1 < < < 1/0
| * | * * | * * | * * | * * | * * | * * | * |
| * | * * | * * | * * | * * | * * | * * | * |
(...) (...) (...) (...) (...) (...) (...) (...) (...)
At last, the colored points display the Rational Numbers {1/1,1/2,1/3,2/3,2/1,3/2,3/1}
with coordinates {X=numerator,Y=denominator}
and a luminance proportional to their decimal values.
See some related pictures (including this one):
 level=3 |
 level=4 |
 level=5 |
 level=6 |
 level=7 |
 level=8 |
 level=15 |
 level=3 |
 level=4 |
 level=5 |
 level=6 |
 level=7 |
 level=8 |

|
(CMAP28 WWW site: this page was created on 08/05/2022 and last updated on 12/09/2022 12:39:14 -CET-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2022-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2022.