Tridimensional display of the Riemann Zeta function inside [+0.1,+0.9]x[0,+50] [Visualisation tridimensionnelle de la fonction Zêta de Riemann dans la bande [+0.1,+0.9]x[0,+50]].
Here is the meaning of the three {X,Y,Z} display coordinates:
X = Re(Zeta(z))
Y = Im(Zeta(z))
Z = Re(z)
the complex number 'z' being defined inside [+0.1,+0.9]x[0,+50].
The real Zeta function is defined as the serie:
n=+infinity
_______
\
\ -s
Zeta(s) = / n
/______
n=1
\-/ s > 1
The complex Riemann Zeta function is defined as the serie:
n=+infinity
_______
\
\ -z
Zeta(z) = / n
/______
n=1
\-/ z : Re(z) > 1
or again (Leonhard Euler):
_________
| |
| | 1
Zeta(z) = | | ---------
| | -z
| | 1 - p
p E P
where 'P' denotes the set of the prime numbers 'p'.
It can be computed for all z with the following analytic continuation:
n=N-1
_______
\
\ -z
Zeta(z) = / n
/______
n=1
1-z -z
N N
+ ------ + -----
z-1 2
k=V p=2k-2
_______ ________
\ B | |
\ 2k -z-(2k)+1 | |
+ / [-------.N | | (z+p)]
/______ (2k)! | |
k=1 p=0
+ epsilon(z,N,V)
\-/ z : Re(z+2V+1) > 1
N ~ |z|
See some related pictures:
(CMAP28 WWW site: this page was created on 01/23/2012 and last updated on 02/08/2022 21:04:59 -CET-)
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related ImagesDesMathematiques picture gallery [Visitez la galerie d'images ImagesDesMathematiques associée]]
[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Please visit the related Tributes picture gallery [Visitez la galerie d'images Tributes associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2012-2022.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2012-2022.