The Generalization of the reflection of a triangle [La généralisation de la réflexion d'un triangle].




The blue spheres display the intersection points of the blue lines with the continuation of the red sides.


Instead of using three points {P(1),P(2),P(3)} defining a triangle, one use a set of N points {P(1),P(2),...,P(N)} defining the polygon {P(1),P(2),...,P(N),P(1)}. Starting with i=1, for each subset of three points {P(i),P(i+1),P(i+2)}, the red point P(i) is transformed into a green point using the "blue" symmetry about the red {P(i+1),P(i+2)} side. At last, this process is iterated by incrementing the index 'i' (+1).


See some related bidimensionnal visualizations (possibly including this one), the blue spheres (if any) displaying the intersection points of the blue lines with the red sides:

 





See some related tridimensionnal visualizations (possibly including this one), the blue spheres (if any) displaying the intersection points of the blue lines with the red faces:

 



(CMAP28 WWW site: this page was created on 07/26/2016 and last updated on 10/05/2016 08:26:35 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2016.
Copyright (c) CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2016.