A tridimensional pseudo-random walk defined by means of the Champernowne number -using all base 10 integer numbers-: 0.1 2 3 4 5 6 7 8 9 10 11 12 13... -113.894 digits, base 10- converted into 146.363 digits 042355... -base 6- [Une pseudo-marche aléatoire tridimensionnelle définie à l'aide du nombre de Champernowne -utilisant tous les nombres entiers en base 10-: 0.1 2 3 4 5 6 7 8 9 10 11 12 13... -113.894 chiffres, base 10- converti en 042355... -146.363 chiffres, base 6-].




Each digit N -base 6- defines the current step of an "absolute" tridimensional random walk:
                    digit=0 ==> move(+1,0,0)
                    digit=1 ==> move(-1,0,0)
                    digit=2 ==> move(0,+1,0)
                    digit=3 ==> move(0,-1,0)
                    digit=4 ==> move(0,0,+1)
                    digit=5 ==> move(0,0,-1)


The coordinates {X,Y,Z} are renormalized as follows:
                    [+0.1906,+0.7091]x[-0.0542,+0.6326]x[-0.1122,+0.4284] --> [0.1,0.9]x[0.1,0.9]x[0.1,0.9]



See some famous real numbers (possibly including this one):




See a random number:



See a tridimensional brownian motion:





See a 'Champernowne number' like (=0.1 2 3 4 5 10 11 12 13 14 15 20 21...) using only the digits from 0 to 5:



See a 'Champernowne number' like (=0.2 3 5 7 11 13 17 19 23 29 31 37 41...) using only the prime numbers:




(CMAP28 WWW site: this page was created on 10/22/2016 and last updated on 09/05/2024 14:15:48 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related NumberTheory picture gallery [Visitez la galerie d'images NumberTheory associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2016-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2016-2024.