Close-up on a pseudo-octonionic Mandelbrot set (a 'Mandelbulb') transformed using the tridimensional life game -tridimensional cross-section- [Agrandissement d'un ensemble de Mandelbrot dans l'ensemble des pseudo-octonions (un 'Mandelbulb') transformé en utilisant le jeu de la vie tridimensionnel -section tridimensionnelle-].
This Mandelbrot set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree
('C' denoting the current octonionic point) and the following eight functions:
P(o) = 1*o + C
8
fR(R ,R ) = (R *R )
1 2 1 2
fA1(A1 ,A1 ) = 8*(A1 +A1 )
1 2 1 2
fA2(A2 ,A2 ) = 8*(A2 +A2 )
1 2 1 2
fA3(A3 ,A3 ) = 8*(A3 +A3 )
1 2 1 2
fA4(A4 ,A4 ) = 1*(A4 +A4 )
1 2 1 2
fA5(A5 ,A5 ) = 1*(A5 +A5 )
1 2 1 2
fA6(A6 ,A6 ) = 1*(A6 +A6 )
1 2 1 2
fA7(A7 ,A7 ) = 1*(A7 +A7 )
1 2 1 2
See the same object without the transformation:
The bidimensional life game
was initially defined by Conway. It uses an empty
square mesh (all vertices are turned off).
At time t=0 some vertices are occupied (they are turned on): this is the initial
state. To go from the time t to the time t+1, it suffices
to count for each vertex -or "Cell"- C(x,y) the number N of its
neighbours (it is less than or equal to 32-1=8) and then to possibly change the state of
M according to the following bidimensional automata
rules:
[R1 = Birth] ((C(t).IS.off).AND.(N == 3)) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < 2).OR.(N > 3))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The boundary conditions can be periodical or not.
This process can be extended in a tridimensional space. The number N
of neighbours of the vertex -or "Cell"- C(x,y,z) is computed
(it is less than or equal to 33-1=26) and
the preceding rules can be extended as follows:
[R1 = Birth] ((C(t).IS.off).AND.((N >= NB1).AND.(N <= NB2))) ==> C(t+1) on
[R2 = Death] ((C(t).IS.on).AND.((N < ND1).OR.(N > ND2))) ==> C(t+1) off
[R3] other cases ==> C(t+1)=C(t)
The bidimensional and tridimensional processes can be extended one step further using two binary lists
'LD' and 'LA' ("Dead" -off- and "Alive" -on- respectively):
[R1 = Birth] ((C(t).IS.off).AND.(LD[N] == 1)) ==> C(t+1)=on
[R2 = Death] ((C(t).IS.on).AND.(LA[N] == 1)) ==> C(t+1)=off
[R3] other cases ==> C(t+1)=C(t)
In the bidimensional case the default 'LD' and 'LA' lists are:
LD="000100000"
LA="110011110"
For this picture, the parameters have the following arbitrary values:
LD="000010001110000011100010000"
LA="111111100011111110000111111"
See some related pictures (including this one):
[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]
[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]
(CMAP28 WWW site: this page was created on 03/12/2012 and last updated on 10/11/2024 21:09:19 -CEST-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Mandelbrot set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Mandelbrot]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François COLONNA, 2012-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2012-2024.