Transcendental Numbers






Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 12/12/2024 and last updated on 12/12/2024 12:22:17 -CET-)



[en français/in french]


Keywords: A2M, An 2000, Bogue, Bug, Bugix, Millenium Bug, Year 2000 Problem, Y2K, Y2K Bug, Anaglyphs, Art and Science, Artistic Creation, Autostereograms, Celestial Mechanics, Computer Graphics, Deterministic Chaos, Fractal Geometry, Intertwinings, Mathematics, Natural Phenomenon Synthesis, Numerical Simulation, Physics, Quantum Mechanics, Rounding-off Errors, Scientific Visualization, Sensitivity to Rounding-Off Errors, Software Engineering, Stereograms, Texture Synthesis, Virtual Experimentation, Virtual Space-Time Travel.






The dictionary Le Petit Robert explains that something is transcendental when it rises above a given level, but also when it is sublime or superior. This implies, in everyday life, that something transcendental is rare, exceptional...


However, in Mathematics, it is quite different. Indeed:


Copyright © Jean-François COLONNA, 2024-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2024-2024.