click to view the MPEG movie (cliquez pour voir le film MPEG)

Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) -tridimensional cross-section- [Zoom sur un ensemble de Julia dans l'ensemble des pseudo-octonions (comme un 'MandelBulb': un 'JuliaBulb') calculé pour A=(-0.581514...,+0.635888...,0,0,0,0,0,0) et avec une rotation de 0 à pi autour de l'axe X -section tridimensionnelle-].




See the Julia set:

A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section-


See a (4xO+1)/(1xO-1) conformal transformation in the Octonionic space of this zoom:

Zoom in on a pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-


(CMAP28 WWW site: this page was created on 03/28/2019 and last updated on 11/20/2024 11:41:37 -CET-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Julia]]
[Please visit the related Animations picture gallery [Visitez la galerie d'images Animations associée]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2019-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2019-2024.