A mixing -multiplication- of a sphere and of a 'thick' helix defined by means of three bidimensional fields [Un mélange -multiplication- d'une sphère et d'une hélice 'épaissie' défini à l'aide de trois champs bidimensionnels].
Many surfaces -bidimensional manifolds- in a tridimensional space
can be defined using a set of three equations:
X = Fx(u,v)
Y = Fy(u,v)
Z = Fz(u,v)
with:
u ∈ [Umin,Umax]
v ∈ [Vmin,Vmax]
[Umin,Umax]*[Vmin,Vmax] then defined a bidimensional rectangular domain D.
v ^
|
V |...... ---------------------------
max | |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
V |...... ---------------------------
min | : :
| : :
O------------------------------------------------->
U U u
min max
If D is sampled by means of a bidimensional rectangular grid (made of Nu*Nv points),
the three {X,Y,Z} coordinates can be defined by means of three rectangular matrices:
X = Mx(i,j)
Y = My(i,j)
Z = Mz(i,j)
with:
i = f(u,Umin,Umax,Nu)
j = g(v,Vmin,Vmax,Nv)
where 'f' and 'g' denote two obvious linear functions...
[for more information about this process]
[Plus d'informations sur ce processus]
For a mixing -multiplication- of a sphere and a 'thick' helix, the three {X,Y,Z} fields/matrices are as follows:
(CMAP28 WWW site: this page was created on 10/29/2019 and last updated on 04/16/2023 20:52:31 -CEST-)
[for more information about that kind of picture and/or process [pour plus d'informations sur ce type d'image et/ou de processus]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2019-2023.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2019-2023.