A 'crumpled' torus defined by means of three bidimensional fields [Un tore 'froissé' défini à l'aide de trois champs bidimensionnels].
Many surfaces -bidimensional manifolds- in a tridimensional space
can be defined using a set of three equations:
X = Fx(u,v)
Y = Fy(u,v)
Z = Fz(u,v)
with:
u ∈ [Umin,Umax]
v ∈ [Vmin,Vmax]
[Umin,Umax]*[Vmin,Vmax] then defined a bidimensional rectangular domain D.
v ^
|
V |...... ---------------------------
max | |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
| |+++++++++++++++++++++++++++|
V |...... ---------------------------
min | : :
| : :
O------------------------------------------------->
U U u
min max
If D is sampled by means of a bidimensional rectangular grid (made of Nu*Nv points),
the three {X,Y,Z} coordinates can be defined by means of three rectangular matrices:
X = Mx(i,j)
Y = My(i,j)
Z = Mz(i,j)
with:
i = f(u,Umin,Umax,Nu)
j = g(v,Vmin,Vmax,Nv)
where 'f' and 'g' denote two obvious linear functions...
[for more information about this process]
[Plus d'informations sur ce processus]
For the 'crumpled' torus, the three {X,Y,Z} fields/matrices are as follows:
-
Fx = fractal(u,v).(R+r.cos(u)).cos(v)
-
Fy = fractal(u,v).(R+r.cos(u)).sin(v)
-
Fz = fractal(u,v).r.sin(u)
with 'fractal(u,v)' denoting a bidimensional periodical fractal generator (fractal(u,v) ∈ [1-0.5,1+0.5]).
The same one was used () for the 'X', 'Y' and 'Z' coordinates.
See a related picture:
See the perfect torus.
(CMAP28 WWW site: this page was created on 04/01/2021 and last updated on 04/16/2023 20:52:06 -CEST-)
[More information about that kind of picture and/or process [Plus d'informations sur ce type d'image et/ou de processus]]
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related GeneralitiesVisualization picture gallery [Visitez la galerie d'images GeneralitiesVisualization associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François Colonna, 2021-2023.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2021-2023.