click to view the MPEG movie (cliquez pour voir le film MPEG)

The construction process of the Menger Sponge [Le processus de construction de l'éponge de Menger].




Definition of the "standard" Menger sponge (related to the Cantor triadic set): A cube is cut into 3x3x3=27 identical smaller cubes. Then the 7 central subcubes (6 for each face and 1 at the center of the cube) are removed. At last this process is iterated recursively with the 27-7=20 remaining subcubes. The fractal dimension of the Menger sponge is equal to:
                     log(20)
                    --------- = 2.726833027860842...
                     log(3)
The "standard" Menger sponge can be defined by means of subdivision rules. Here is the way how each of the 27 cubes of the "standard" Menger sponge at a given level is subdivided:
                    
                   "standard"  Menger sponge
                     _____________________
                    /                     \
 
                    TTT       TFT       TTT
                    TFT       FFF       TFT
                    TTT       TFT       TTT
 
                    \_/
 
             Sierpinski carpet
or again:
                    TTT TFT TTT  TFT FFF TFT  TTT TFT TTT
where 'T' ('True') and 'F' ('False') means respectively "subdivide the current cube" and "do not subdivide and destroy the current cube". The rules are repeated at each level, but they can be changed periodically and for example:
                    
                    TTT TFT TTT  TFT FFF TFT  TTT TFT TTT   FFF FTF FFF  FTF TTT FTF  FFF FTF FFF
 
                    \___________________________________/   \___________________________________/
 
                          "standard"  Menger sponge                      complement
alternates the "standard" Menger sponge and its complement. Obviously many other rules do exist as shown below...

Beside 'F' and 'T' some other possibilities exist: 'R' that means "subdivide the current cube" or "do not subdivide and destroy the current cube" Randomly with a given threshold between 0 and 1 (0.5 being the default value) and 'S' that means "Stop subdividing". Obviously 'F', 'T', 'R' and 'S' can be mixed at will...


Moreover an amazing cross-section can be made using the plane:
                    2X - 2Y + 2Z - 1 = 0
the origin of the coordinates being at the center of the main cube and the axis being parallel to its sides.

This process can be generalized in many different ways and for example:
                      3     3     3
                    2X  - 2Y  + 2Z  - 1 = 0
(the curved one) or again:
                          1  2         1  2         1  2    2
                    (X - ---)  + (Y - ---)  + (Z - ---)  = R
                          2            2            2
(the spherical one).




The "standard" Menger sponge:

See some related pictures (possibly including this one):

The Menger Sponge -iteration 0- The Menger Sponge -iteration 1- The Menger Sponge -iteration 2- The Menger Sponge -iteration 3- The Menger Sponge -iteration 4- The Menger Sponge -iteration 5-
The Menger Sponge -iteration 1- The Menger Sponge -iteration 2- The Menger Sponge -iteration 3- The Menger Sponge -iteration 4- The Menger Sponge -iteration 5- ==> A tridimensional intertwining made of the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of the Menger Sponge -iteration 5- inside a sphere Untitled 0318 Untitled 0319
An amazing cross-section inside the Menger Sponge -iteration 1- An amazing cross-section inside the Menger Sponge -iteration 2- An amazing cross-section inside the Menger Sponge -iteration 3- An amazing cross-section inside the Menger Sponge -iteration 4- An amazing cross-section inside the Menger Sponge -iteration 5- ==> An amazing cross-section inside the Menger Sponge -iteration 5- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- An amazing cross-section inside the Menger Sponge -iteration 5- with a O^2conformal transformation in the octonionic space -tridimensional cross-section- An amazing cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section- Untitled 0234
Empty Empty Empty Empty Empty >>> A tridimensional intertwining made of an amazing cross-section inside the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an amazing cross-section inside the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an amazing cross-section inside the Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an amazing cross-section inside the Menger Sponge -iteration 5- inside a sphere Untitled 0314 Untitled 0315
Empty Empty Empty Empty An amazing generalized cross-section inside the Menger Sponge -iteration 5- ==> An amazing generalized cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty A spherical cross-section inside the Menger Sponge -iteration 5- ==> A spherical cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty A double spherical cross-section inside the Menger Sponge -iteration 5-
Empty Empty Empty Empty A thin double spherical cross-section inside the Menger Sponge -iteration 5-
Empty Empty Empty Empty A 'pyramidal' cross-section inside the Menger Sponge -iteration 5-, 'Ô temps tes pyramides' -a Tribute to Jorge Luis Borges- ==> A 'pyramidal' cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-, 'Ô temps tes pyramides' -a Tribute to Jorge Luis Borges-
Empty Empty Empty Empty A 'double conic' cross-section inside the Menger Sponge -iteration 5-, 'Ô temps tes pyramides' -a Tribute to Jorge Luis Borges- ==> A 'double conic' cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty A 'conic' cross-section inside the Menger Sponge -iteration 5-, 'Ô temps tes pyramides' -a Tribute to Jorge Luis Borges- ==> A 'conic' cross-section inside the Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty The intersection of the Menger Sponge -iteration 5- and of a quadridimensional Calabi-Yau manifold -tridimensional representation- ==> The intersection of the Menger Sponge -iteration 5- and of a quadridimensional Calabi-Yau manifold -tridimensional representation- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-




Some non linear transformations of the "standard" Menger sponge:

See some related pictures (possibly including this one):

The Menger Sponge -iteration 1- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The Menger Sponge -iteration 2- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The Menger Sponge -iteration 3- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The Menger Sponge -iteration 4- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The Menger Sponge -iteration 5- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty The Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-


Empty Empty Empty Empty The Menger Sponge -iteration 5- with a tridimensional non linear transformation ==> Untitled 0230
Empty Empty Empty Empty The Menger Sponge -iteration 5- with a tridimensional non linear transformation

Empty Empty Empty Empty An amazing cross-section inside the Menger Sponge -iteration 5- with a tridimensional non linear transformation ==> Untitled 0231 -a Tribute to Philippe Druillet-
Empty Empty Empty Empty An amazing cross-section inside the Menger Sponge -iteration 5- with a tridimensional non linear transformation




The complement of the "standard" Menger sponge:

See some related pictures (possibly including this one):

The complement of the Menger Sponge -iteration 1- The complement of the Menger Sponge -iteration 2- The complement of the Menger Sponge -iteration 3- The complement of the Menger Sponge -iteration 4- The complement of the Menger Sponge -iteration 5-
An amazing cross-section inside the complement of the Menger Sponge -iteration 1- An amazing cross-section inside the complement of the Menger Sponge -iteration 2- An amazing cross-section inside the complement of the Menger Sponge -iteration 3- An amazing cross-section inside the complement of the Menger Sponge -iteration 4- An amazing cross-section inside the complement of the Menger Sponge -iteration 5-




Some extended Menger sponges: Two ways of extending the "standard" Menger sponge. On the one hand one can change the used volume (from a cube to a sphere for example). On the other hand one can change the rules of subdividing each cube as well as their numbers...

See some related pictures (possibly including this one):

An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- Empty Empty
An amazing cross-section inside an extended Menger Sponge -iteration 1- An amazing cross-section inside an extended Menger Sponge -iteration 2- An amazing cross-section inside an extended Menger Sponge -iteration 3- Empty Empty


An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section- An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
Empty Empty Empty Empty Empty >>> A tridimensional intertwining made of an extended Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an extended Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an extended Menger Sponge -iteration 5- inside a sphere A tridimensional intertwining made of an extended Menger Sponge -iteration 5- inside a sphere Untitled 0320 Untitled 0328
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-


An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An extended Menger Sponge -iteration 1- An extended Menger Sponge -iteration 2- An extended Menger Sponge -iteration 3- An extended Menger Sponge -iteration 4- An extended Menger Sponge -iteration 5- ==> An extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
A parallelepipedic extended Menger Sponge -iteration 1- A parallelepipedic extended Menger Sponge -iteration 2- A parallelepipedic extended Menger Sponge -iteration 3- A parallelepipedic extended Menger Sponge -iteration 4- A parallelepipedic extended Menger Sponge -iteration 5- ==> A parallelepipedic extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-


A full-random extended Menger Sponge -iteration 1- A full-random extended Menger Sponge -iteration 2- A full-random extended Menger Sponge -iteration 3- A full-random extended Menger Sponge -iteration 4- A full-random extended Menger Sponge -iteration 5- ==> A full-random extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section- Untitled 0272
A half-random extended Menger Sponge -iteration 1- A half-random extended Menger Sponge -iteration 2- A half-random extended Menger Sponge -iteration 3- A half-random extended Menger Sponge -iteration 4- A half-random extended Menger Sponge -iteration 5- ==> A half-random extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
An amazing cross-section inside an extended Menger Sponge -iteration 1- An amazing cross-section inside an extended Menger Sponge -iteration 2- An amazing cross-section inside an extended Menger Sponge -iteration 3- An amazing cross-section inside an extended Menger Sponge -iteration 4- An amazing cross-section inside an extended Menger Sponge -iteration 5- ==> An amazing cross-section inside an extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-
A half-random extended Menger Sponge -iteration 1- A half-random extended Menger Sponge -iteration 2- A half-random extended Menger Sponge -iteration 3- A half-random extended Menger Sponge -iteration 4- A half-random extended Menger Sponge -iteration 5- ==> A half-random extended Menger Sponge -iteration 5- with a (4xO+1)/(1xO-1) conformal transformation in the octonionic space -tridimensional cross-section-




The fractal "standard" Menger sponge:

See some related pictures (possibly including this one):

The eroded complement of the Menger Sponge -iteration 2- The eroded Menger Sponge -iteration 3-

The erosion of the Menger Sponge -iteration 1- The erosion of the Menger Sponge -iteration 2- The erosion of the Menger Sponge -iteration 3- The erosion of the Menger Sponge -iteration 4- The erosion of the Menger Sponge -iteration 5-  
The erosion of an amazing cross-section inside the Menger Sponge -iteration 1- The erosion of an amazing cross-section inside the Menger Sponge -iteration 2- The erosion of an amazing cross-section inside the Menger Sponge -iteration 3- The erosion of an amazing cross-section inside the Menger Sponge -iteration 4- The erosion of an amazing cross-section inside the Menger Sponge -iteration 5-  
The erosion of an amazing cross-section inside the Menger Sponge -iteration 1- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The erosion of an amazing cross-section inside the Menger Sponge -iteration 2- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The erosion of an amazing cross-section inside the Menger Sponge -iteration 3- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The erosion of an amazing cross-section inside the Menger Sponge -iteration 4- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section- The erosion of an amazing cross-section inside the Menger Sponge -iteration 5- with a 1/O conformal transformation in the octonionic space -tridimensional cross-section-


(CMAP28 WWW site: this page was created on 02/11/2018 and last updated on 12/09/2024 12:44:30 -CET-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]


[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2018-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2018-2024.