The Lorenz attractor [L'attracteur de Lorenz].




See a set of 4x3 stereograms:




See an anaglyph:




See an artistic view:




The Lorenz attractor is defined with the following system of differential equations:
                      -   dx
                     |   ---- = -10x + 10y
                     |    dt
                     |
                     |    dy
                    <    ---- = 28x - y - xz
                     |    dt
                     |
                     |    dz       8
                     |   ---- = - ---z + xy
                      -   dt       3
This picture is obtained integrating these equations using the Euler method with:
                    {X ,Y ,Z } = {0.01,0.01,0.01}
                      0  0  0

Dt = 0.01
the colors being chosen as follows:
                    RED    = K.Dx
                    GREEN  = K.Dy
                    BLUE   = K.Dz
where K denotes a renormalization factor and {Dx,Dy,Dz} are the results of the numerical integration process.


(CMAP28 WWW site: this page was created on 08/14/2007 and last updated on 04/26/2015 11:49:43 -CEST-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related DeterministicChaos picture gallery [Visitez la galerie d'images DeterministicChaos associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright (c) Jean-François Colonna, 2007-2015.
Copyright (c) France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2007-2015.