The Lorenz attractor [L'attracteur de Lorenz].
See a set of 4x3 stereograms:
See an anaglyph:
See an artistic view:
The Lorenz attractor is defined with the following system of differential equations:
- dx
| ---- = -10x + 10y
| dt
|
| dy
< ---- = 28x - y - xz
| dt
|
| dz 8
| ---- = - ---z + xy
- dt 3
This picture is obtained integrating these equations using the Euler
method with:
{X ,Y ,Z } = {0.01,0.01,0.01}
0 0 0
Dt = 0.01
the colors being chosen as follows:
RED = K.Dx
GREEN = K.Dy
BLUE = K.Dz
where K denotes a renormalization factor and {Dx,Dy,Dz} are the results of
the numerical integration process.
(CMAP28 WWW site: this page was created on 08/14/2007 and last updated on 04/26/2015
11:49:43 -CEST-)
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[Please visit the related DeterministicChaos picture gallery [Visitez la galerie d'images DeterministicChaos associée]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright (c) Jean-François Colonna, 2007-2015.
Copyright (c) France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2007-2015.