A foggy pseudo-octonionic Julia set ('MandelBulb' like: a 'JuliaBulb') computed with A=(-0.581514...,+0.635888...,0,0,0,0,0,0) and with a rotation about the X axis -tridimensional cross-section- [Un ensemble de Julia brumeux dans l'ensemble des pseudo-octonions (comme un 'MandelBulb': un 'JuliaBulb') calculé pour A=(-0.581514...,+0.635888...,0,0,0,0,0,0) et avec une rotation autour de l'axe X -section tridimensionnelle-].
See the dynamics of this process when changing the two first components (-0.5815147625160462 and +0.6358885017421603) of the polynomial 'P' -see the following definition- according to a travel along the border of the Mandelbrot set in the complex plane:
This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree and the
following eight functions (where the exponent 4 as well as the multiplicative factor 4 are also called the degree):
P(o) = 1*o + {-0.5815147625160462,+0.6358885017421603,0,0,0,0,0,0}
4
fR(R ,R ) = (R *R )
1 2 1 2
fA1(A1 ,A1 ) = 4*(A1 +A1 )
1 2 1 2
fA2(A2 ,A2 ) = 4*(A2 +A2 )
1 2 1 2
fA3(A3 ,A3 ) = 4*(A3 +A3 )
1 2 1 2
fA4(A4 ,A4 ) = 4*(A4 +A4 )
1 2 1 2
fA5(A5 ,A5 ) = 4*(A5 +A5 )
1 2 1 2
fA6(A6 ,A6 ) = 4*(A6 +A6 )
1 2 1 2
fA7(A7 ,A7 ) = 4*(A7 +A7 )
1 2 1 2
See some Julia sets (including this one) with various degrees:
Degree=2:
Degree=3:
Degree=4:
Degree=8:
Degree=9:
[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]
[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]
(CMAP28 WWW site: this page was created on 11/29/2014 and last updated on 09/05/2024 14:14:19 -CEST-)
[See the generator of this picture [Voir le générateur de cette image]]
[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]
[See the following comment(s): octonionic numbers, pseudo-octonionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): octonions, pseudo-octonions, ensemble de Julia]]
[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]
[The Y2K Bug [Le bug de l'an 2000]]
[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]
Copyright © Jean-François COLONNA, 2014-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2014-2024.