Three hexagons and the twenty-eight first strictly positive integer numbers -nine of them being prime numbers- [Trois hexagones et les vingt-huit premiers nombres entiers strictement positifs -neuf d'entre-eux étant des nombres premiers-].
V = 3x3 + 3 + 1 = 13 different vertices (9 single vertices, 3 double vertices and 1 triple vertice)and:
S = 3x4 + 3 = 15 different sides (12 single sides and 3 double sides).The N=V+S=13+15=28 first strictly positive integer numbers {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28} are located on this structure with the following constraints:
1 + 15 + 28 = 44 1 + 16 + 27 = 44 1 + 21 + 22 = 44 2 + 14 + 28 = 44 2 + 17 + 25 = 44 3 + 18 + 23 = 44 3 + 20 + 21 = 44 4 + 19 + 21 = 44 5 + 12 + 27 = 44 5 + 13 + 26 = 44 6 + 11 + 27 = 44 7 + 9 + 28 = 44 7 + 13 + 24 = 44 8 + 17 + 19 = 44 10 + 11 + 23 = 44