click to view the MPEG movie (cliquez pour voir le film MPEG)

2.pi rotation about the Y axis of a 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set -tridimensional cross-section- [Rotation de 2.pi autour de l'axe Y d'un 'mélange' entre un ensemble de Mandelbrot dans l'ensemble des pseudo-quaternions et un ensemble de Julia dans l'ensemble des pseudo-quaternions -section tridimensionnelle-].




This mixing between a Mandelbrot set and a Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the first degree and the following four functions:
                    P(q) = 1*q + 0.5*q  + {-0.5815147625160462,+0.6358885017421603,0,0}
                                      C
                                       2
                    fR(R ,R ) = (R *R )
                        1  2      1  2
                    fT(T ,T ) = 2*(T +T )
                        1  2        1  2
                    fP(P ,P ) = 2*(P +P )
                        1  2        1  2
                    fA(A ,A ) = 2*(A +A )
                        1  2        1  2
'qC' being the current point.


See some artistic views of this rotation:

Artistic view of a 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- Artistic view of a 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section-


See the sixteen points of view:

A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section-  
A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section-  
A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section-  
A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section- A 'mixing' between a pseudo-quaternionic Mandelbrot set and a pseudo-quaternionic Julia set computed with A=(-0.58...,+0.63...,0,0)-tridimensional cross-section-


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 03/06/2010 and last updated on 05/12/2021 19:17:14 -CEST-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): quaternionic numbers, pseudo-quaternionic numbers, Mandelbrot set, quaternionic numbers, pseudo-quaternionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): quaternions, pseudo-quaternions, ensemble de Mandelbrot]]
[Please visit the related DeterministicFractalGeometry picture gallery [Visitez la galerie d'images DeterministicFractalGeometry associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François Colonna, 2010-2021.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / Ecole Polytechnique, 2010-2021.