Click to download and possibly see the movie [Cliquez pour télécharger et voir éventuellement le film]

Phase rotation of the wavelet transform of a bidimensional fractal field [Rotation de la phase de la transformée en ondelettes d'un champ fractal bidimensionnel].




The dilatation factor equals 0.06 and the phase varies from 0 to 2.pi.


A bidimensional fractal field See the fractal field.
The real part of an anisotropic Morlet wavelet See the Morlet wavelet used.

Tridimensional integration of the phase rotation of the wavelet transform of a bidimensional fractal field See a first tridimensional integration of this rotation.
Tridimensional integration of the phase rotation of the wavelet transform of a bidimensional fractal field See a second tridimensional integration of this rotation.

Artistic view of the tridimensional integration of the phase rotation of the wavelet transform of a bidimensional fractal field See a first artistic view of this rotation.
Artistic view of the tridimensional integration of the phase rotation of the wavelet transform of a bidimensional fractal field See a second artistic view of this rotation.


(CMAP28 WWW site: this page was created on 04/16/2003 and last updated on 01/02/2025 12:56:07 -CET-)



[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related SignalProcessing picture gallery [Visitez la galerie d'images SignalProcessing associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2003-2025.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2003-2025.