Click to download and possibly see the movie [Cliquez pour télécharger et voir éventuellement le film]

2.pi rotation about the Y axis of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb') -tridimensional cross-section- [Rotation de 2.pi autour de l'axe Y d'un ensemble de Julia dans l'ensemble des pseudo-quaternions (comme un 'MandelBulb': un 'JuliaBulb') -section tridimensionnelle-].




This Julia set is a tridimensional cross-section and was computed with a polynomial 'P' of the second degree and the following four functions:
                            2
                    P(q) = q  + {-0.5815147625160462,+0.6358885017421603,0,0}
                    
                    fR(R ,R ) = R *R
                        1  2     1  2
                    fT(T ,T ) = T +T
                        1  2     1  2
                    fP(P ,P ) = P +P
                        1  2     1  2
                    fA(A ,A ) = A +A
                        1  2     1  2



See some artistic views of this rotation:

Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -a Tribute to José Hernández- -tridimensional cross-section- Artistic view of a pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-


See the sixteen points of view:

A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-  
A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section- A pseudo-quaternionic Julia set ('MandelBulb' like: a 'JuliaBulb')computed with A=(-0.581514...,+0.635888...,0,0) -tridimensional cross-section-


[for more information about pseudo-quaternionic numbers (en français/in french)]
[for more information about pseudo-octionic numbers (en français/in french)]

[for more information about N-Dimensional Deterministic Fractal Sets (in english/en anglais)]
[Plus d'informations à propos des Ensembles Fractals Déterministes N-Dimensionnels (en français/in french)]


(CMAP28 WWW site: this page was created on 03/30/2010 and last updated on 12/23/2024 08:40:22 -CET-)



[See the generator of this picture [Voir le générateur de cette image]]

[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[See the following comment(s): quaternionic numbers, pseudo-quaternionic numbers, Julia set [Voir le(s) commentaire(s) suivant(s): quaternions, pseudo-quaternions, ensemble de Julia]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François COLONNA, 2010-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2010-2024.