Définition de l'Hyper-Tore parallélépipédique






Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[N'oubliez pas de visiter Une Machine Virtuelle à Explorer l'Espace-Temps et au-delà où vous trouverez plus de 10.000 images et animations à la frontière de l'Art et de la Science]
(Site WWW CMAP28 : cette page a été créée le 30/12/2022 et mise à jour le 03/10/2024 17:05:32 -CEST-)



/*===================================================================================================================================*/
/*************************************************************************************************************************************/
/*                                                                                                                                   */
/*        D E F I N I T I O N   D ' U N   H Y P E R - T O R E  :                                                                     */
/*                                                                                                                                   */
/*                                                                                                                                   */
/*        Definition de la surface ('v $xrs/hyper_tore.11$K') :                                                                      */
/*                                                                                                                                   */
/*                    Il est defini parametriquement                                                                                 */
/*                  en fonction des trois parametres 'u',                                                                            */
/*                  'v' et 'w' :                                                                                                     */
/*                                                                                                                                   */
/*                                      R(w)      = w                                                                                */
/*                                                                                                                                   */
/*                                      F (u,v,w) = R(w).cos(v)                                                                      */
/*                                       x                                                                                           */
/*                                                                                                                                   */
/*                                      F (u,v,w) = R(w).sin(v)                                                                      */
/*                                       y                                                                                           */
/*                                                                                                                                   */
/*                                      F (u,v,w) = u                                                                                */
/*                                       z                                                                                           */
/*                                                                                                                                   */
/*                  avec :                                                                                                           */
/*                                                                                                                                   */
/*                                      u ∈ [-1/4,+1/4]                                                                              */
/*                                                                                                                                   */
/*                                      v ∈ [ 0 , 2.p ]                                                                              */
/*                                                                                                                                   */
/*                                      w ∈ [+1/2, +1 ]                                                                              */
/*                                                                                                                                   */
/*                  (ou 'p' designe 'pi').                                                                                           */
/*                                                                                                                                   */
/*                                                                                                                                   */
/*************************************************************************************************************************************/


(Nota : les lignes d'explications qui précèdent sont des commentaires extraits des programmes ayant été utilisés pour calculer les images correspondantes. Ce programme en est un exemple parmi des centaines.)


Copyright © Jean-François COLONNA, 2022-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2022-2024.