The normal field of a 'crumpled' sphere defined by means of three bidimensional fields [Le champ des normales d'une sphère 'froissée' définie à l'aide de trois champs bidimensionnels].




Many surfaces -bidimensional manifolds- in a tridimensional space can be defined using a set of three equations:
                    X = Fx(u,v)
                    Y = Fy(u,v)
                    Z = Fz(u,v)
with:
                    u  [Umin,Umax]
                    v  [Vmin,Vmax]
[Umin,Umax]*[Vmin,Vmax] then defined a bidimensional rectangular domain D.
                       v ^
                         |
                    V    |...... ---------------------------
                     max |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                         |      |+++++++++++++++++++++++++++|
                    V    |...... ---------------------------
                     min |      :                           :
                         |      :                           :
                         O------------------------------------------------->
                                U                           U              u
                                 min                         max

If D is sampled by means of a bidimensional rectangular grid (made of Nu*Nv points), the three {X,Y,Z} coordinates can be defined by means of three rectangular matrices:
                    X = Mx(i,j)
                    Y = My(i,j)
                    Z = Mz(i,j)
with:
                    i = f(u,Umin,Umax,Nu)
                    j = g(v,Vmin,Vmax,Nv)
where 'f' and 'g' denote two obvious linear functions...


[for more information about this process]
[Plus d'informations sur ce processus]


For the 'crumpled' sphere, the three {X,Y,Z} fields/matrices are as follows:

with 'fractal(u,v)' denoting a bidimensional periodical fractal generator (fractal(u,v) [1-0.5,1+0.5]).
The one used for the 'Z' coordinate () differs from the one used for the 'X' and 'Y' coordinates () in order to avoid discontinuities at the two poles.

Only the left half part of each field is used for:
                    u  [0,pi]
when:
                    v  [0,2.pi]


See the perfect sphere.


(CMAP28 WWW site: this page was created on 01/30/2006 and last updated on 04/16/2023 20:51:29 -CEST-)



[for more information about that kind of picture and/or process [pour plus d'informations sur ce type d'image et/ou de processus]]


[See all related pictures (including this one) [Voir toutes les images associées (incluant celle-ci)]]

[Please visit the related GeneralitiesVisualization picture gallery [Visitez la galerie d'images GeneralitiesVisualization associée]]

[Go back to AVirtualMachineForExploringSpaceTimeAndBeyond [Retour à AVirtualMachineForExploringSpaceTimeAndBeyond]]

[The Y2K Bug [Le bug de l'an 2000]]

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[Mail [Courrier]]
[About Pictures and Animations [A Propos des Images et des Animations]]


Copyright © Jean-François Colonna, 2006-2023.
Copyright © France Telecom R&D and CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2006-2023.