Labyrinths






Jean-François COLONNA
[Contact me]

www.lactamme.polytechnique.fr

CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France

[Site Map, Help and Search [Plan du Site, Aide et Recherche]]
[The Y2K Bug [Le bug de l'an 2000]]
[Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.]]
[Please, visit A Virtual Machine for Exploring Space-Time and Beyond, the place where you can find more than 10.000 pictures and animations between Art and Science]
(CMAP28 WWW site: this page was created on 05/14/2023 and last updated on 10/03/2024 17:09:02 -CEST-)



[en français/in french]


Abstract: How to build labyrinths?


Keywords: Picture Synthesis, Labyrinths.



One simple way to build labyrinths is to define a library of elementary bidimensional symbols:


Some elementary symbols used to built labyrinths -with a big black ghost structure at pi/4-
.



Then, their arbitrary bidimensional assembly will reveal labyrinths:


Tridimensional display of two intricated random labyrinths -the wide one and the narrow one-
.

Two intricated random labyrinths -the wide one and the narrow one-
.

Two intricated random labyrinths -the wide one and the narrow one-
.

The 180 first digits of 'pi' displayed as a Labyrinth
.



Copyright © Jean-François COLONNA, 2023-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2024.