Labyrinths
Jean-François COLONNA
[Contact me]
www.lactamme.polytechnique.fr
CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641, École polytechnique, Institut Polytechnique de Paris, CNRS, France
[
Site Map, Help and Search [
Plan du Site, Aide et Recherche
]
]
[
The Y2K Bug [
Le bug de l'an 2000
]
]
[
Real Numbers don't exist in Computers and Floating Point Computations aren't safe. [
Les Nombres Réels n'existent pas dans les Ordinateurs et les Calculs Flottants ne sont pas sûrs.
]
]
[
Please, visit
A Virtual Machine for Exploring Space-Time and Beyond
, the place where you can find more than 10.000 pictures and animations between Art and Science
]
(CMAP28 WWW site: this page was created on 05/14/2023 and last updated on 10/03/2024 17:09:02 -CEST-)
[en français/in french]
Abstract
: How to build labyrinths?
Keywords
: Picture Synthesis, Labyrinths.
One simple way to build labyrinths is to define a library of elementary bidimensional symbols:
Some elementary symbols used to built labyrinths -with a big black ghost structure at pi/4-
.
Then, their arbitrary bidimensional assembly will reveal labyrinths:
Tridimensional display of two intricated random labyrinths -the wide one and the narrow one-
.
Two intricated random labyrinths -the wide one and the narrow one-
.
Two intricated random labyrinths -the wide one and the narrow one-
.
The 180 first digits of 'pi' displayed as a Labyrinth
.
Copyright © Jean-François COLONNA, 2023-2024.
Copyright © CMAP (Centre de Mathématiques APpliquées) UMR CNRS 7641 / École polytechnique, Institut Polytechnique de Paris, 2023-2024.